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Abstract

Decades of research have demonstrated that many calcifying species are negatively

affected by ocean acidification, a major anthropogenic threat in marine ecosystems.

However, even closely related species may exhibit different responses to ocean

acidification and less is known about the drivers that shape such variation in differ-

ent species. Here, we examine the drivers of physiological performance under ocean

acidification in a group of five species of turf‐forming coralline algae. Specifically,

quantitating the relative weight of evidence for each of ten hypotheses, we show

that variation in coralline calcification and photosynthesis was best explained by

allometric traits. Across ocean acidification conditions, larger individuals (measured

as noncalcified mass) had higher net calcification and photosynthesis rates. Impor-

tantly, our approach was able to not only identify the aspect of size that drove the

performance of coralline algae, but also determined that responses to ocean acidifi-

cation were not dependent on species identity, evolutionary relatedness, habitat,

shape, or structural composition. In fact, we found that failure to test multiple, alter-

native hypotheses would underestimate the generality of physiological perfor-

mances, leading to the conclusion that each species had different baseline

performance under ocean acidification. Testing among alternative hypotheses is an

essential step toward determining the generalizability of experiments across taxa

and identifying common drivers of species responses to global change.
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1 | INTRODUCTION

Ocean acidification (OA) has been identified as a key but understud-

ied stressor for marine organisms, leading to rapid growth in efforts

to test its effects on a wide range of potentially susceptible species

(Kroeker, Kordas, Crim, & Singh, 2010; Kroeker et al., 2013a).

Although experiments have revealed that many species are nega-

tively impacted by OA, some organisms exhibit mixed responses and

we know less about the variation in OA response among closely

related taxa or among taxa with similar physiological traits (e.g.,

Calosi et al., 2013; Dupont, Ortega‐Martínez, & Thorndyke, 2010;

Gooding, Harley, & Tang, 2009; Noisette, Egilsdottir, Davoult, &

Martin, 2013; Okazaki et al., 2017; Ries, Cohen, & McCorkle, 2009).

As a consequence, it is unclear if variation in the response of species

to OA is a result of inherent physiological differences among species

or a result of infrequent efforts to test for generalities across taxa

(Gaylord et al., 2015; O'Connor, Selig, Pinsky, & Altermatt, 2012;

O'Connor et al., 2015; Wernberg, Smale, & Thomsen, 2012). This is

an important issue because if each species is differentially sensitive

to OA, the number of experiments needed to quantitate multispecies
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response to OA is greatly increased, likely making such an approach

infeasible.

Ecologists have long sought to explain variation in species

responses to the environment by grouping species according to shared

evolutionary histories and/or traits (e.g., Raunkiaer, 1934). For exam-

ple, species can be categorized into functional groups that respond

similarly to climate change (Smith, Shugart, & Woodward, 1997). Pre-

vious studies have examined OA sensitivity using various grouping

methods, including by whether organisms produce a calcified structure

(Kroeker et al., 2010), the relative solubility of their shell and skeletal

minerals (Kroeker et al., 2010; Ries et al., 2009), their carbon use strat-

egy (Koch, Bowes, Ross, & Zhang, 2013), or their evolutionary history

(Schaum, Rost, Millar, & Collins, 2013). However, few studies have

tested among a broad array of potential alternative hypotheses that

could explain organismal performance under OA (Betini, Avgar, &

Fryxell, 2017; Brown et al., 2011; O'Connor et al., 2015). A quantita-

tive, statistical approach is critical for assessing the relative importance

of the many factors that may directly or indirectly influence perfor-

mance under stressors such as OA.

In this study, we tested the role of evolutionary relatedness,

functional traits, and habitat in shaping multispecies performance in

the context of OA. We developed hypotheses relevant to a system

of co‐occurring coralline algae and tested them in a series of OA

experiments. Focal species were five species of turf‐forming coralline

algae (Corallinales, Rhodophyta) of the Northeast Pacific: Corallina

officinalis, Corallina vancouveriensis, Calliarthron tuberculosum, Bossiella

orbiginiana, and Bossiella plumosa. Coralline algae are among the most

vulnerable calcifying species to an acidifying ocean (Koch et al.,

2013) and the ecological consequences of coralline algae decline or

extinction are likely to be high, given their important role as facilita-

tors of foundation species in this system (Barner, Hacker, Menge, &

Nielsen, 2016). The concepts and data behind each hypothesis are

detailed below.

1.1 | From ecological theory to quantitative
hypotheses

We developed ten hypotheses that consider aspects of species iden-

tity, evolutionary relationship, size, morphology, and habitat to

explain variation in physiological performance under OA among mul-

tiple species of coralline algae (Figure 1). Beyond the simple hypoth-

esis that species may not respond to OA (hypothesis H0), we

considered whether physiological performance under OA differs

among species (hypothesis H1). Differences in physiological perfor-

mance may be manifested in two ways. In the context of OA, spe-

cies may have different baseline physiological rates that are testable

as differences in the intercepts of each species’ performance (Fig-

ure 1, an “additive” effect). Alternatively, OA effects may differ

among species, translated as differences in the slopes of the effect

of OA among species (Figure 1, an “interactive” effect). In this study,

we tested for both additive and interactive effects (see Methods), as

both are of interest. For example, an organism with a low baseline

physiological rate may fare poorly under OA compared to organisms

with higher baseline physiological rates (an additive effect) or organ-

isms may have similar baseline rates in current conditions, but OA

may differentially influence their physiological performance (an inter-

active effect).

Next, we hypothesize that all individuals in our study have simi-

lar performance under OA, with no other predictors of performance

than OA itself (hypothesis H2). If species respond similarly to OA,

we may classify them as a functional group, defined as a set of spe-

cies defined by shared responses to environmental conditions

(Grime, 1973; Raunkiaer, 1934; Smith et al., 1997). Among sea-

weeds, the turf‐forming articulated coralline algae in this study all fall

within a previously assigned functional group based on similar mor-

phological traits and similar responses to physical disturbance (Ste-

neck & Dethier, 1994). Across this group, responses to OA have

been qualitatively similar (Koch et al., 2013; Kroeker et al., 2013a;

McCoy & Kamenos, 2015): calcification decreases with OA (as a

function of saturation state, Ω) while photosynthesis increases with

OA (as a function of carbon availability, pCO2). However, because

some previous studies have found differences in response to OA

among coralline algae (e.g., Doropoulos, Ward, Diaz‐Pulido, Hoegh‐
Guldberg, & Mumby, 2012; Noisette et al., 2013), the shared charac-

teristics previously used to group turf‐forming coralline algae may

not produce similar responses to OA. Functional groups may vary

depending on the focal global change stressor, and groupings may

be inappropriate if group membership is not explicitly linked to the

environmental change in interest (Dormann & Woodin, 2002).

A third hypothesis (hypothesis H3) is that multispecies physiolog-

ical performance under OA could map onto evolutionary relation-

ships (Figure 1). In this study, species in the genus Bossiella are more

closely related to Calliarthron than to species in the genus Corallina

(Figure 2; Hind & Saunders, 2013). If physiological responses to envi-

ronmental conditions are evolutionarily conserved, more closely

related species may have more similar physiological performance

under global change (Buckley & Kingsolver, 2012; Marchin, Salk,

Hoffmann, & Dunn, 2015).

Further hypotheses (hypotheses H4–H8) are that multispecies

physiology under OA could depend on specific functional traits. As

functional traits are not always reflected in evolutionary relation-

ships, they may be a key predictive link between physiology, mor-

phology, and ecosystem function under climate change (Guittar,

Goldberg, Klanderud, Telford, & Vandvik, 2016). Here, we focus on a

selected set of traits, primarily related to organismal size and shape

(Figure 2) that are shared across species and can be hypothesized a

priori to link physiology and performance under OA.

As background, variation in metabolic rates across taxa is

strongly constrained by variation in size (Brown, Gillooly, Allen, Sav-

age, & West, 2004; Robinson, Peters, & Zimmerman, 1983). Size has

been shown to interact with OA such that smaller individuals were

less affected by OA than larger individuals (Carey & Sigwart, 2014;

an interactive effect in Figure 1). In calcifying species, size could be

measured in a number of ways including mass, surface area, and

shape. For example, by mass, the largest individuals or the largest

species may have the highest net calcification and photosynthesis
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F IGURE 1 Hypotheses and predictions tested in this study. Each nonclimate driver was tested for an additive and interactive effect with
OA, shown as visual predictions with species hypothetical fitted responses to OA. If OA acts independently from the driver, these effects are
modeled with additive predictors (see Appendix S2 for explicit additive predictions). However, if the effect of OA on the biological response
depends on the driver, this is modeled as an interactive effect. The expected effect of OA will depend on the specific biological response of
interest. In these hypothetical visualizations, the overall effect of OA is primarily negative, modeling the expected effect of OA on calcification.
Data to support each prediction can be found in Appendix S1

4466 | BARNER ET AL.



rates for any given OA condition. Measurements of mass can include

both living and calcified components (total mass; hypothesis H4) or

just living components (noncalcified mass; hypothesis H5). H4 pre-

dicts that calcified parts are vulnerable to dissolution under OA, and

thus this measure of mass may be the best metric to describe

whole‐organism performance under OA. Alternatively, H5 predicts

that because noncalcified mass is the living component of the organ-

ism, it will best reflect the ability of the organism to perform physio-

logically under OA.

Other size or shape‐related alternatives are also possible. For

example, because algae derive carbon and nutrients through direct

surface contact with water, net photosynthesis and calcification may

be proportional to surface area (hypothesis H6—individual surface

area). Furthermore, after accounting for differences in mass among

individuals, differences occur among species in their percent noncal-

cified composition, which may drive differences in performance

under OA (H7—species percent noncalcified composition). Specifically,

organisms with higher percent noncalcified mass may have lower

physiological rates and be more affected by OA. Also, vulnerability

to OA may be a function of shape, as measured by surface area to

volume (SAV) ratio (Smith, 2009). That is, a “rounder” individual

(smaller SAV ratio) will have lower surface area exposure to sur-

rounding water than a same‐sized individual of another species with

a larger SAV ratio. This lower exposure may limit physiological

capacity to photosynthesize and calcify as a function of lower effec-

tive surface area (hypothesis H8—species surface area to volume

ratio). In this study, size did not differ among species but it did

among individuals, and SAV ratio and percent noncalcified composi-

tion varied among species but not individuals.

Finally, habitat differences could explain physiological perfor-

mance under OA (hypothesis H9). If species ranges are determined

by climate‐sensitive environmental conditions, then current species

habitat distributions may predict future sensitivity to global change

(i.e., the principle employed in climate envelope modeling; Buckley &

Kingsolver, 2012). For example, in this study, all five species co‐oc-
cur but are distributed across three habitats potentially differing in

pH regime (Hurd et al., 2011; Kwiatkowski et al., 2016). Tide pools

in the NE Pacific experience more acidified pH regimes than occurs

outside pools (Chan et al., 2017; Kwiatkowski et al., 2016). Thus,

tide pool species may be less sensitive to OA than species that occur

F IGURE 2 Data underlying each hypothesis. Relationships between total mass and (a) surface area, (b) surface area to volume (SAV) ratio,
(d) calcified mass, and (e) percent calcified mass. While total mass, calcified mass, and surface area vary among individuals, and were thus
treated as continuous predictors. SAV ratio and percent calcified mass vary among species (c, f), and were thus treated as categorical
predictors. (g) Primary habitats of taxa. (h) Evolutionary relationships among taxa, from Hind and Saunders (2013). Additional details may be
found in Appendix S1
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on emergent rock. Furthermore, among emergent intertidal taxa,

species in low‐flow areas may be more sensitive to OA than those in

high‐flow areas. Low flow promotes formation of a diffusion bound-

ary layer ameliorating low‐pH conditions during active photosynthe-

sis (Comeau, Edmunds, Lantz, & Carpenter, 2014; Hurd et al., 2011),

thereby buffering low‐flow species from OA exposure. Thus, hypoth-

esis H9 states that when placed in common conditions, tide pool

species should be least sensitive under OA, followed by taxa from

turbulent intertidal locations (high flow), then those from low‐flow
intertidal locations (Figures 1 and 2).

To test our hypotheses, we assayed the physiology of species

under short‐term experimental OA. Using a regression design, we

tested OA effects on net calcification and photosynthesis rates

across a wide range of saturation state values that corresponded to

levels currently experienced and predicted for coastal waters in the

region (see Materials and Methods; Reum et al., 2014; Kwiatkowski

et al., 2016; Chan et al., 2017). We asked: (a) which model best

describes multispecies coralline physiology under OA, and (b) does

the consideration of nonclimate drivers change the conclusion about

coralline performance under OA?

2 | MATERIALS AND METHODS

2.1 | Experiments

2.1.1 | Overview of experiments

Short‐term experiments were repeated five times to assemble a con-

tinuous range of OA exposure treatments (Table 1). Multiple trials of

each experiment were conducted over 1–2 days. Net photosynthesis

and calcification rates in response to short‐term OA exposure were

assayed using the alkalinity anomaly method (Smith & Key, 1975).

Briefly, the alkalinity anomaly method exploits the fixed stoichiomet-

ric relationship between calcium carbonate (CaCO3) precipitation,

declines in total alkalinity (TA), and dissolved inorganic carbon (DIC),

which proceeds in molar ratios of 2:1 for every mole of CaCO3 pro-

duced. Reductions in DIC deviating from the 2:1 TA:DIC ratio reflect

carbon fixation in photosynthesis. By precisely measuring changes in

TA and DIC, this technique allows quantitation of net calcification

and net photosynthesis rates in rapid assays (Chisholm & Gattuso,

1991). Because net rates of calcification and photosynthesis are

directly equivalent to growth, the alkalinity anomaly method yields

metrics that can be readily interpreted in terms of individual perfor-

mance in our system, where competition for space is strong (Dayton,

1971). Short duration experiments are particularly advantageous with

slow‐growing organisms like coralline algae, where the common

method of net calcification estimation requires organisms to be held

in long‐term laboratory culture, posing logistical and interpretive

challenges (Maier et al., 2013). Furthermore, the alkalinity anomaly

method correlates with long‐term buoyant weight estimators of cal-

cification (Schoepf et al., 2017) and meta‐analysis suggests that

experiment duration does not dramatically alter the conclusions of

the effect of OA on calcifying algae (Kroeker et al., 2013a).

Each experiment followed the same overall design and protocol

(Table 1). In each trial, algae were placed in chambers with water of

known carbonate chemistry, across a range of OA treatments (pH:

7.11–8.22, pCO2: 343.6–4590.6 μatm, Ωarag, 0.38–2.4; Appendix S3).

Current observed values of pH, pCO2, Ωarag for coastal waters in our

region are among the most acidified regimes in the world, ranging

from 7.22 to 9.0, 10 to 3,276 μatm, and 0.2 to 2.8, respectively

(Chan et al., 2017; Kwiatkowski et al., 2016; Reum et al., 2014).

Intertidal zones in our region also commonly experience rapid shifts

in pH, with hourly shifts in pH of ~0.3 pH units per hour (Chan et

al., 2017; Kwiatkowski et al., 2016). Overall, compared to 1990s val-

ues, surface pH is expected to decline globally by 0.07–0.3 units by

2100 (IPCC scenario RCP 2.6 vs. RCP 8.5; Bopp et al., 2013). In our

region saturation state is expected to decline by ~0.5–1.5 units by

2100 (RCP 8.5 vs. 2.6; Kwiatkowski et al., 2016). These values corre-

spond to ranges used in our experiments.

Due to constraints of laboratory access and the occasional inac-

cessibility of field sites where algae were collected, experiments

were conducted over a period of eight months. Each experiment var-

ied little in design, with two exceptions. First, experiment 5 was

designed to provide a wider range of individual sizes for testing

Date
8, 10 July
2014

6 August
2014

21 August
2014

23 February
2015

28, 29
April 2015

Experiment number 1 2 3 4 5

Water type MW MGW MGW MW MW

Range pH treatments 7.11–8.03 7.40–8.02 7.27–8.04 7.57–8.11 7.13–8.06

Number of trials 5 2 2 1 4

Number of species 5 5 5 2a 5

Samples per species,

across treatments

14 5 5 5 20

Mean temperature, °C 9.88 (0.22) 14.56 (0.07) 14.38 (0.04) 11.17 (0.32) 10.61 (0.14)

Mean irradiance,

μmol s−1 m−2
454.1 (14.2) 527.8 (42.9) 539.6 (42.1) 417.3 (8.3) 352.0 (9.6)

Notes. M: mixed; MG: mesocosm‐generated.
aBossiella plumosa, Corallina vancouveriensis.

TABLE 1 Details of the experiments.
“Type” of experiment refers to whether
the OA treatment water was generated
using water mixing or a flow‐through
mesocosm. Standard errors for means are
in parentheses
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hypotheses H4–5, so smaller sized algal fronds were collected than in

experiments 1–4. Second, mean light conditions and temperatures

varied among our experiments (Table 1, Appendix S3) but were

within the range of light (Close, 2014) and temperature (Helmuth et

al., 2016) variation measured in the field. We accounted for this vari-

ation in experimental conditions in our statistical analysis with mixed

effects models (see Materials and Methods: Statistical Analysis).

2.1.2 | Experimental procedure

For each experiment, we first chiseled rock chunks with attached

algal fronds from the intertidal low zone substrate at Fogarty Creek

near Depoe Bay, Oregon, USA. (44°84′N, 124°06′W). Taxa found

primarily in tide pools (Calliarthron tuberculosum, Corallina officinalis)

were collected from low zone tide pools and the other species were

collected outside of tide pools. Samples were transported to Hatfield

Marine Science Center (HMSC) in Newport, Oregon and acclimated

to laboratory conditions in ambient flow‐through seawater under a

12‐hr light cycle for 4–6 days prior to assays. On the day of the

experiment, we removed any attached invertebrates or nontarget al-

gal epibionts and transferred the samples from HMSC to our labora-

tory at Oregon State University (Corvallis, Oregon).

Treatment water was generated for these assays in two similar

ways, depending on whether the OA laboratory at HMSC was being

used for experiments independent of this one (Table 1). Each

method is fundamentally similar, in that pure CO2 is bubbled into

seawater drawn from the same source to reach a target pCO2 value.

In the first method, we used water generated at specified pCO2

levels in our OA mesocosm system at HMSC, thus simplifying the

process of generating target treatment water. Briefly, pure CO2 and

CO2‐free air was mixed and regulated electronically by mass‐flow
controllers to generate air of a specific composition, which was then

injected into ambient flowing seawater to alter seawater chemistry

in three reservoir tanks to reach three target pCO2 values (Fangue et

al., 2010). Water was drawn from these reservoir tanks for each trial.

In the second method, when the mesocosm was not in operation,

instead of generating treatment water with mass‐flow controllers,

we generated treatment water “by hand”. Seawater was collected in

20 L carboys from the sand‐filtered seawater line at HMSC and

stored temporarily in Corvallis at −20°C to cool to in situ conditions.

DIC content was either reduced by bubbling with N2 or elevated by

bubbling with pure CO2. Dissolved oxygen was monitored during

this process and increased through brief aeration with room air to

bring levels to near saturation. To prepare the individual treatments,

high and low DIC water was mixed to achieve the desired treatment

level. In both methods, we measured pH spectrophotometrically

using an autonomous unit (SAMI Ocean pH Sensor, Sunburst Sen-

sors) configured to run as a benchtop unit (Martz, Carr, French, &

DeGrandpre, 2003).

To run the experiment, chambers (5.5 L or 4 L plastic food con-

tainers) were filled with treated water and placed under two grow

lights (Sunlight Supply, Inc.; Sun Blaze T5 HO 36W Fluorescent Type

Lamp). Algae were assigned to chambers using a stratified random

design, such that each row and column of chambers contained each

of the five species and a mix of treatment levels (Appendix S4). To

maintain water motion, an aquarium pump (Hydor Pico 400 centrifu-

gal pump) was added to each chamber. The assay began when the

light environment stabilized (as measured by LI‐COR LI‐250 Light

Meter with a LI‐190SA Quantum Sensor) and all algal samples were

dropped simultaneously into their respective chambers. Algae

remained in the chambers for 30–45 min, then were removed from

the chambers, dried, and weighed (Appendix S1). Temperature was

recorded for every chamber. To regulate temperature under the

lights, cool water was placed externally around the experimental

chambers.

2.1.3 | Experimental controls

In experiment 5, we added a control (i.e., no algae present) low and

high Ωarag treatment for each trial (n = 6 per OA level). We used

these results to determine if either alkalinity or DIC changed in the

controls during the experiment. Using linear regression, for both

alkalinity and DIC, the slope of the relationship between starting and

ending conditions for controls did not differ from 1 (alkalinity slope

95% CI: −0.6520 to 1.776, DIC slope 95% CI: 0.8964–1.5646). In
addition, we regressed starting against final saturation state to deter-

mine if the relationship differed from the expected 1:1 (see Fig-

ure S7 for Ωend ~ Ωstart with algae present). Unlike the slope of the

line for the same relationship when algae were present (95% CI:

0.7983–0.8831), the slope of the line when algae were absent did

not differ from 1.00 (95% CI: 0.7141–1.012). This suggests that the

change in saturation state over the course of the algal assays was

not due to water equilibrating with air.

2.1.4 | Seawater sample analysis

To characterize starting treatments, water samples were collected in

acid‐washed glass bottles, treated with 50 μl mercuric chloride to

stop biological activity, and capped for later pH and alkalinity analy-

sis. Water was collected from each chamber at the end of each trial

in the same way to characterize pH and alkalinity changes. Measur-

ing pH and alkalinity of each water sample enabled parameterization

of the entire carbonate system. We measured pH spectrophotomet-

rically as above. Alkalinity was determined by spectrophotometric

titration (Yao & Byrne, 1998). The quality of our alkalinity measure-

ments was assessed at the beginning of each day of sample analysis

by comparison of analytical precision to certified seawater standards

from Andrew Dickson (Scripps Institute of Oceanography, La Jolla,

CA), as recommended by community best practices standards (Dick-

son, Sabine, & Christian, 2007). Our analytical precision was

2236.99 ± 2.39 μmol/kg for alkalinity reference Batch 130 (in

mean ± standard deviation; reference = 2238.04 ± 0.53) and

2224.87 ± 3.60 for Batch 145 (reference = 2226.16 ± 0.71, informa-

tion on each reference batch is available at http://cdiac.ornl.gov/

oceans/Dickson_CRM/batches.html). Using measured pH, alkalinity,

and temperature of each sample, aragonite saturation state
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(hereafter, “saturation state”), DIC and pCO2 were calculated with

the program CO2calc (Robbins, Hansen, Kleypas, & Meylan, 2010)

using carbonate constants of Lueker, Dickson, and Keeling (2000)

and constant salinity (31 o/oo for experiments 1–3, 33 o/oo for experi-

ment 4, 34 o/oo for experiment 5), measured using laboratory sali-

nometers (Autosal Guideline Instruments).

With the alkalinity anomaly method, net calcification rate (in

μmol Carbon hr−1) was then calculated following Smith and Key

(1975):

ΔAlk
2 � V

time=60

Where ΔAlk is the difference in alkalinity from the start to end

of the assay (Alkstart–Alkfinal), V is the volume of saltwater for each

assay, and “time” is the duration of the assay in minutes. Net photo-

synthesis rate (μmol Carbon hr−1) was calculated as:

ΔDIC� ΔAlk
2

� �� V

time=60

Where ΔDIC is the difference in dissolved inorganic carbon from

the start to end of the assay (DICstart−DICfinal).

2.2 | Statistical analysis

We tested among our alternative OA hypotheses using mixed effects

models to account for random variation among trials and experi-

ments. Analyses were conducted in R using the “lme4”, “MuMIn”,
and “AICcmodavg” packages for mixed effects modeling and model

selection (Bartón, 2017; Bates et al., 2017; Mazerolle, 2017; R Core

Team, 2017). Data are available in the Pangaea database (Pan-

gaea.de, doi: 10.1111/gcb.14372).

2.2.1 | Fixed effects structure

Each hypothesis was mapped to a corresponding fixed effects model

and support for each hypothesis was evaluated using model selec-

tion. Fixed effects depended on the hypothesis being tested, with

net calcification and photosynthesis rate as dependent variables. The

OA fixed effect was saturation state (Ω) in the calcification models

and pCO2 in the photosynthesis models, treated as continuous due

to the regression experimental design. We first fit and tested among

several relationships between pCO2 and photosynthesis (linear and

saturating), and saturation state and calcification (linear, saturating,

unimodal). We compared AICc (Akaike's Information Criterion cor-

rected for small sample size; see Materials and Methods: Model

Selection Procedure) among models with a linear relationship

between OA and physiological rate or a saturating relationship

between OA and physiological rate. In addition, for calcification and

saturation state, we tested the fit of a unimodal relationship using a

quadratic term, as previous studies have suggested that calcification

is highest at intermediate saturation states (e.g., Ries et al., 2009).

The saturating relationship of calcification with OA was also tested

using a simple model with a binary term allowing the slope of the

effect of saturation state on net calcification to vary depending on

whether conditions thermodynamically favored calcification (Ω > 1)

or dissolution (Ω < 1) (e.g., binary term = 0 when saturation state <

1, = 1 when saturation state > 1). The best fit calcification OA

model included a linear effect of saturation state on calcification and

this simple binary term, while the best fit photosynthesis OA model

included a linear relationship with pCO2. The relationships between

OA and physiology for these best fit models were then implemented,

with the nonclimate drivers, for hypotheses 1–9 (below).

To test among ecological hypotheses, in addition to the null

hypothesis (H0) that OA has no impact on calcification and photo-

synthesis rates, each rate was modeled as either a function of (a) OA

alone (H2: equivalent performance); (b) OA with dummy variables for

species identity (H1), genus (H3: evolutionary constraints), or habitat

(H9); (c) OA with the continuous predictors of total mass (H4), non-

calcified mass (H5), and surface area (H6); and (d) OA with a continu-

ous predictor of size (tested with total mass, noncalcified mass, and

surface area) with a dummy variable for rank SAV ratio (H8) or rank

percent noncalcified composition (H7). No models included interac-

tions among nonclimate drivers (e.g., habitat × size). Of the predic-

tors, total mass was measured for each sample in our experiments.

Surface area and noncalcified mass required destructive sampling

and thus was instead calculated from total mass using conversion

equations (Appendix S1). Percent noncalcified composition was

determined to vary more among species than among individuals

(Appendix S1), so samples were assigned a rank by species. Analysis

of statistical power is in Appendix S4.

As with other calcifying species, calcification and photosynthesis

was highly correlated across all species (Appendix S5). This correla-

tion is important in the context of OA because photosynthesis

directly influences OA water chemistry. Specifically, carbon uptake

during photosynthesis increased the saturation state of the water

surrounding the coralline algae (Cornwall et al., 2012; De Beer &

Larkum, 2001; Kwiatkowski et al., 2016). Furthermore, in some spe-

cies, photosynthesis itself may stimulate calcification (Borowitzka &

Larkum, 1976). Thus, to comprehensively evaluate whether calcifica-

tion was a function of saturation state, we re‐tested all calcification

models with an additive or interactive fixed effect of photosynthesis

and OA.

2.2.2 | Candidate set and subset

One of the most difficult and important steps in the model selection

process is building the “candidate set” of possible models for infer-

ence (Burnham & Anderson, 2002; Johnson & Omland, 2004). Best

practices for building the candidate set emphasize the importance of

using a priori hypotheses to build ecologically relevant and inter-

pretable statistical models, restricting the number of models in the

candidate set to minimize spurious results (Burnham & Anderson,

2002; Johnson & Omland, 2004), and avoiding correlated biological

predictors (Symonds & Moussalli, 2011). In this study, we built our

set of statistical fixed effects models based on a priori hypothesized

relationships among the predictors and response variables (see
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Introduction, Appendix S1). Another approach to model‐building is

“all‐subsets selection” or “dredging”, where all possible models are

included in the candidate set (Burnham & Anderson, 2002; Johnson

& Omland, 2004). While all‐subsets is a legitimate form of model

selection, it is primarily used for exploratory analyses and can lead

to high Type I error rates if the all‐subsets models are used for infer-

ence (Harrison et al., 2018). As such, because we did not design

the experiment to test for interactive effects among our hypothe-

sized ecological predictors (e.g., habitat × size), we did not include

such models in our candidate set. The only included interactions

were for size‐related categorical variables (e.g., individual mass ×

SAV, individual mass × percent calcium carbonate), to disentangle

the role of mass from the role of shape or composition. However,

implications of other possible interactions can be found in the

Discussion.

To compare our method of multiple alternative hypotheses test-

ing to methods that omit nonclimate drivers of physiology or only

test for differences among species, we reduced our candidate set.

This reduced set included only models that either accounted for OA

or for OA and species (both OA + species and OA × species). The

specific models included in the reduced set are indicated in the list

of all models in Appendix S6. From among these models, we then

followed the same model selection procedure described below in

Materials and Methods: Fixed effects structure.

2.2.3 | Random effects structure

To determine random effect structure, we tested the fit of several

random effects structures for both calcification and photosynthesis

models using AIC (see Methods: Model selection procedure) and a

maximal fixed effects structure (Barr, Levy, Scheepers, & Tily, 2013;

Zuur, Ieno, Walker, Saveliev, & Smith, 2009). We evaluated the fit of

random intercept models that varied by experiment or by trial

nested in experiment, and random slopes models that accounting for

variation in the effect of temperature and light either among experi-

ments or trials. The best random effect structure for calcification

models that did not include a fixed effect of photosynthesis

accounted for random variation in the effect of temperature on cal-

cification among experiments. The best structure for calcification

models that included a fixed effect of photosynthesis accounted for

random variation in the effect of photosynthesis among experiments.

The best structure for photosynthesis models accounted for random

variation in the effect of light among experiments. See Appendix S4

for the fitted random effects for each model. Our results did not

qualitatively change if only a random intercept model was used or

no random effect structure was specified (e.g., model selection con-

sistently identified the same top models).

2.2.4 | Model selection procedure

For each hypothesis, we tested among a no‐OA (Y = X), an additive

(Y = OA + X), and an interactive (Y = OA × X) model. Overall, we

selected among a total of 84 competing calcification models and 38

photosynthesis models, each corresponding to a hypothesis (Appen-

dix S6). The model with the lowest AICc was considered the “best”
model in the set of models, as the difference in AICc (ΔAICc)

between the best model and a model of interest is a measure of

information lost between the two models (Burnham & Anderson,

2002). Generally, any model with ΔAICc < 2 is considered a top

model (Burnham & Anderson, 2002). In this study, there were two

top calcification models and two top photosynthesis models. All con-

tinuous data were centered and rescaled before analysis to allow for

comparison among disparate units on a common scale (Schielzeth,

2010). Assumptions of normality were checked and met for all mod-

els. Effect sizes of top models are thus presented in rescaled and

centered units, with parameter estimates ± standard error. Size vari-

ables (total mass, noncalcified mass, surface area) were log trans-

formed to meet assumptions of normality before centering and

rescaling. For all models, we calculated Akaike weights, which are a

measure of the weight of evidence for each model, considering the

full model set (Burnham & Anderson, 2002). Higher Akaike weights

correspond to models with higher probability of being the best mod-

els for the data and the Akaike weights of all models in the set sum

to 1.

3 | RESULTS

Overall, models without an effect of OA both on calcification and

photosynthesis were not supported (H0; Figure 3). The best models

of physiological performance under OA supported the same hypoth-

esis for calcification and photosynthesis, that variation in perfor-

mance under OA was driven by OA and individual noncalcified mass

(H5). Similar hypotheses related to individual size hypotheses had

high support (H4—total mass, H6—surface area; Figure 3), although

support for the next‐highest ranked hypothesis was at least an order

of magnitude lower than support for the top hypothesis. Among the

models with lowest support for both calcification and photosynthesis

were those corresponding to hypotheses H1 (species‐specific
response), H8 (SAV ratio), and H9 (habitat) (Appendix S6).

According to the top models, variation in photosynthesis rates

was explained by pCO2 and individual noncalcified mass (Figure 4).

One top model included additive effects of pCO2 and size,

such that photosynthesis increased with OA (higher pCO2;

βpCO2
= 0.501 ± 0.045) and was higher across all OA levels for lar-

ger individuals (βnoncalcified mass = 0.446 ± 0.055). The other top

model included a weak interactive effect of size and OA

(βnoncalcified mass�pCO2
= −0.032 ± 0.046), such that at high pCO2, lar-

ger individuals photosynthesized less than smaller individuals. The

random effect of light on photosynthesis varied among experi-

ments (mean βlight across experiments = 0.020; Supporting Informa-

tion Appendices S4 and S7).

Calcification scaled additively with individual noncalcified mass

(βnoncalcified mass = 0.395 ± 0.045, Figure 4). The effect of OA on net

calcification depended on saturation state: when the saturation state

thermodynamically favored dissolution (Ω < 1), OA had a strong neg-

ative effect on net calcification rate (βΩ < 1 = 0.492 ± 0.147).
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However, when calcification is favored (Ω > 1), the effect of satura-

tion state on net calcification rate was neutral (βΩ > 1 = −0.022 ±

0.176). The effect of OA on net calcification rate was amplified

through an indirect additive effect on individual photosynthesis

(βphoto = 0.303 ± 0.075), which varied randomly among experiments

(Supporting Information Appendices S4 and S7). One top calcification

model included only additive effects of OA and size, while, like the

photosynthesis models, the other top model included a weak interac-

tive effect of size and OA (βnoncalcified mass�pCO2
= −0.026 ± 0.045).

Overall, the top models explained 70% and 61% of the total variation

in multispecies calcification and photosynthesis rates, respectively

(adjusted R2).

Finally, because many marine global change studies do not

include nonclimate drivers (Brown et al., 2011; O'Connor et al.,

2015), we evaluated the relative performance of our alternative

hypothesis approach by re‐analyzing our data without trait, habitat,

or phylogenetic predictors. Thus, we reduced our model set to

include only models corresponding to hypotheses H0 (no effect of

OA), H1 (species differ in responses to OA), and H2 (species have

the same responses to OA). Given this set of models, the top models

of calcification and photosynthesis included a term for species iden-

tity, supporting hypothesis H1 (ΔAICc ≤ 2; Appendix S6).

4 | DISCUSSION

In this study, five species of turf‐forming coralline algae had declin-

ing net calcification rates and increasing net photosynthesis rates

with short‐term increases in OA. Previous studies of coralline algae

have demonstrated a primarily negative effect of experimental acidi-

fication on calcification rates, growth, recruitment, and skeletal struc-

ture (Koch et al., 2013; Kroeker et al., 2010; McCoy & Kamenos,

2015). Such responses are not universal: the experimental effect of

OA on coralline algae sometimes can be neutral (Doropoulos et al.,

2012; Dutra, Koch, Peach, & Manfrino, 2016; Noisette et al., 2013),

may depend on source location (Padilla‐Gamiño, Gaitán‐Espitia, Kelly,
& Hofmann, 2016), and may be modulated by the organisms them-

selves (Cornwall, Comeau, & McCulloch, 2017). In the field, coralline

algae are absent from, or rare, near low‐pH seeps (Baggini et al.,

2014; Kroeker, Gambi, & Micheli, 2013b), suggesting a long‐term
effect of OA on coralline algal abundance and distribution.

The hypothesis that organismal size was the best predictor of an

individual's physiological performance under OA was supported.

However, unlike previous studies, we have only weak evidence that

size influences the fundamental relationship between OA and

F IGURE 3 Weights of evidence for each statistical model, by
hypothesis and response variable. Akaike weights represent the
probability that the given model is the best model for the data.
Thus, higher Akaike weights correspond with a higher weight of
evidence for a model. Note the log scale of the y‐axis

F IGURE 4 Fitted response of coralline algae to ocean
acidification. Both photosynthesis (a) and calcification (b) show
additive functions of OA (pCO2 and saturation state [Ω],
respectively) and log noncalcified mass. Higher pCO2 and lower
saturation state are expected under OA. Points represent the raw
data. Larger point size corresponds to higher individual noncalcified
mass. Fitted regression lines show the mean response to ocean
acidification when all other predictors are set to the mean condition
(see Appendix S7 for variation in fitted regression lines for the top
additive model), and the different line types represent the effect of
thermodynamically favorable (Ω > 1) or unfavorable (Ω < 1)
saturation state on calcification
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physiology (Carey & Sigwart, 2014; Kroeker et al., 2013a; Thomsen,

Haynert, Wegner, & Melzner, 2015). We found that species with

higher noncalcified mass had higher baseline photosynthesis and cal-

cification rates, similar to a study by Jensen, Gibson, Littler, and Lit-

tler (1985) of the genus Halimeda (calcifying crustose algae). The

ultimate cause of the scaling of physiology with organismal size has

been attributed to a variety of factors (reviewed in LaBarbera,

1989), including (a) surface area, and (b) geometry of internal trans-

port networks (West, Brown, & Enquist, 1997). However, coralline

algae do not have the internal venation networks that would support

(b) and neither surface area nor SAV ratio were supported as predic-

tors of OA response in our study (H6, H8). In a previous study, SAV

ratio was found to be an important predictor of dissolution for dead

calcareous bryozoans under OA conditions (rounder taxa dissolved

more slowly; Smith, Nelson, & Danaher, 1992). However, live photo-

synthesizing calcifiers like the coralline algae in this study, can miti-

gate local OA conditions through photosynthesis (Comeau et al.,

2014; Hurd et al., 2011) suggesting that more living biomass simply

results in more metabolic “machinery”.
We found the lowest support for hypotheses H2 and H8, which

stated that performance under OA was species‐specific or dictated

by SAV ratio, respectively. We also found low support for evolution-

ary relatedness (hypothesis H3), similar to a study of picoplankton

OA response (Schaum et al., 2013). This is not surprising given that

both studies use closely related organisms (present study: within one

subfamily; Schaum et al., 2013: ecotypes in a genus) and thus may

not represent a wide enough range of trait differences that might

predict response to OA (Kroeker et al., 2010). A taxonomically broad

experimental OA study with a paired quantitative phylogeny would

allow a more nuanced analysis and contribute to a better under-

standing of the relationship between evolution and the effect of OA

on organisms (Widdicombe & Spicer, 2008).

Similarly, habitat (H9) was not an important predictor of sensitiv-

ity to OA in this study. Pacifici et al. (2015) differentiate sensitivity

and vulnerability to global change: sensitivity is the intrinsic ability of

a species to tolerate changes in climate while vulnerability to global

change is a combination of species’ sensitivity, their exposure to glo-

bal change, and their capacity to adapt to change (Pacifici et al.,

2015). In this study, while habitat did not predict species sensitivity

to OA, a species’ ultimate vulnerability to OA may be a function of

habitat, as our five coralline species live in different habitats with

differing present pH conditions. Additional work is needed to quanti-

tate the relationship between physiology and habitat under present

and future OA. Habitat might also indirectly influence sensitivity to

OA via the influence of habitat on size. Species in this study that

were primarily found in tide pools (Calliarthron tuberculosum, Corallina

officinalis) were larger in tide pools than on emergent rock (Appendix

S1). Species were collected from their dominant habitat type, so fur-

ther work to disentangle size and habitat would be an important

experiment.

In a systematic review of experiments from 2000 to 2009, 77%

of OA experiments included only a single species (Wernberg et al.,

2012). By conducting replicate experiments with five species

(including coralline species, Bossiella orbiginiana, Bossiella plumosa,

and Calliarthron tuberculosum, which have not previously been

included in OA experiments), we were able to detect general

responses across five abundant coralline species in the NE Pacific

intertidal ecosystem. However, there may be additional reasons why

these species would perform similarly under OA, beyond that tested

in this study. For example, all the species in this study use the same

calcium carbonate polymorph to calcify (Koch et al., 2013). Further-

more, all species in our experiments were collected from the same

site. Because there is evidence of local and regional adaptation in

the physiological response of some species to OA (Calosi et al.,

2017; Padilla‐Gamiño et al., 2016), a follow‐up study testing spatial

variation in response seems warranted.

4.1 | Linking experimental physiology to global
change ecology

Ultimately, physiological responses to global change must be inte-

grated with population and community‐level consequences to make

predictions about how such changes will impact species or ecosys-

tems of interest (e.g., economically important target species, ecosys-

tems providing specific services). Of course, long‐term OA

physiology studies are necessary next steps, given the possibility for

acclimation and adaptation (Kelly & Hofmann, 2013), or the long‐
term upregulation of coralline calcification in response to experimen-

tal OA (Cornwall et al., 2017). To move from physiological response

to population response to global change requires a mechanistic link

between individual physiology (Pörtner & Farrell, 2008) and popula-

tion growth (McLean, Lawson, Leech, & van de Pol, 2016). For exam-

ple, although experiments have linked calcification responses to OA

in short‐term (hours) to longer experiments (weeks; Schoepf et al.,

2017), future work could explore the link between individual calcifi-

cation and population responses to OA.

Based on our findings, a focus on organismal size may be a use-

ful link between individual and population response to OA. While it

is already standard practice to include size in physiological analyses,

a feasible next step would be to design OA metabolic studies com-

parable to the predictions of metabolic scaling theory (Brown et al.,

2004). Over longer periods of acidification, mean population body

size may decrease in response to the energetic demands of OA

(Sheridan & Bickford, 2011), which could have downstream commu-

nity‐level impacts. In crustose coralline algae, size determines the

outcome of competition for space (McCoy & Pfister, 2014; Steneck,

Hacker, & Dethier, 1991). If, as we found, smaller species are the

most sensitive to OA due to low baseline physiological rates or if

coralline size decreases with OA (McCoy & Ragazzola, 2014), OA

may drive observed decadal changes to dominance hierarchies in

these species (McCoy & Pfister, 2014).

Linking experimental results to population‐level response to OA

may be limited by the nature of laboratory experimentation. As a

function of the common OA experimental design involving meso-

cosm containers (Fangue et al., 2010), over the time course of our

experiments, the respiration that resulted from low carbon
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availability drove the saturation state from favorable for calcification

to unfavorable (Appendix S5). On the other hand, when starting sat-

uration state was low, net calcification was equally low across all

individuals, but the high availability of carbon for photosynthesis

likely buoyed saturation state to prevent dissolution. This effect of

photosynthesis on calcification was double the magnitude of the

direct effect of saturation state on calcification. Our experimental

approach likely underestimated the effect of photosynthesis on calci-

fication, given the water flow in our experiment, which may have

broken up diffusion boundary layers that buffer the impact of OA on

calcification (Hurd et al., 2011). Although it remains to be seen

whether photosynthesis has scalable impacts on calcification in the

field, these results are consistent with in situ observations from tide

pools (Kwiatkowski et al., 2016) and in low‐flow water regimes

(Hurd, 2015).

Moving from population trends to community response requires

understanding of the factors controlling community composition and

range limits (e.g., OA influences on crust thickness in coralline algae

which decreases competitive ability; McCoy & Pfister, 2014 and

McCoy & Ragazzola, 2014). Given data constraints and the limita-

tions of current community‐level climate change prediction methods

(Pacifici et al., 2015), our approach tests alternative hypotheses of

species responses to global change. The goal is to move beyond a

case‐by‐case evaluation of the impact of global change on individual

species and toward a synthesis that informs forecasts.

4.2 | Ways forward for ocean acidification ecology

A major frontier for ecology is moving from heuristic models to ex-

planatory predictions derived from conceptual models, and ultimately

toward anticipatory predictions that forecast the likely future struc-

ture and function of ecological communities under global change

(Mouquet et al., 2015). Our study represents a step in this direction

by identifying key drivers that shape multispecies physiological

responses to global change, an important component of mechanisti-

cally scaling between short‐term experiments and ecosystem‐level
climate change predictions. Ecologists have long been interested in

grouping species by shared environmental responses (Grime, 1973;

Raunkiaer, 1934), and in applying such groupings to climate change

predictions (Smith et al., 1997). Physiological experiments have the

capacity to be a major tool for assessment and generalization of spe-

cies responses to global change (Pörtner & Farrell, 2008). To date,

the focus of multispecies global change research has been on alter-

native drivers of observational population‐level responses to climate

change (Angert et al., 2011; McLean et al., 2016; Pacifici et al.,

2017). We instead examine the alternative drivers of physiological

responses to experimental global change.

Focusing on OA, a major threat to marine life that has relatively

few conceptual syntheses (Gaylord et al., 2015), we suggest that

previous research likely underestimates the generality of OA

responses if nonclimate drivers are not included in multispecies anal-

yses. When we did not include nonclimate drivers such as evolution-

ary relatedness, functional traits or habitat in our models, we

concluded that each species had a different baseline physiological

performance under OA (e.g., supported hypothesis H1). However,

when we included a full suite of drivers, hypothesis H1 was consis-

tently among the hypotheses with the lowest support (Figure 3). By

testing multiple, alternative hypotheses based on ecological first

principles, we found that individual size predicted physiology, influ-

encing response to OA, explaining up to 70% of the total variation

in multispecies calcification rates.

Going forward, multispecies OA experiments that test ecologi-

cally, evolutionarily, and physiologically relevant alternative hypothe-

ses could reveal insights into broad constraints on species response

to global change. Promisingly, global change biologists have the tools

and information to formulate such system‐specific hypotheses, from

natural history knowledge and increasingly available phylogenetic and

trait databases. Such alternative hypotheses should include nonOA

predictors of physiology, an important step toward characterizing the

influence of OA relative to other global change factors, such as tem-

perature or eutrophication in multi‐stressor scenarios. Overall, our

approach provides tools to move toward predicting organismal

responses to global change using both existing theory and data.
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