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abstract: Local interactions, biotic and abiotic, can have a strong
influence on the large-scale properties of ecosystems. However, eco-
logical models often explore the influence of local biotic interactions
where physical disturbance is included as a large-scale and imposed
source of variability but is not allowed to interact with biotic pro-
cesses at the local scale. In marine intertidal communities dominated
by mussels, wave disturbances create gaps in the mussel bed that
recover through a successional sequence. We present a lattice model
of mussel disturbance dynamics that allows local interactions between
wave disturbance and mussel recolonization, in which each cell of
the lattice can be empty, occupied by a mussel bed element, or
disturbed (which corresponds to a newly disturbed cell that has
unstable edges). As in natural ecosystems, wave disturbance can also
spread from disturbed to adjacent occupied cells, and recolonization
can also spread from occupied to adjacent empty cells. We first val-
idate the local rules from artificial gap experiments and from natural
gap monitoring along the Oregon coast. We analyze the properties
of the model system as a function of different oceanographic forcings
of productivity and disturbance. We show that the mussel bed can
go through phase transitions characterized by a large sensitivity of
mussel cover and patterns to oceanographic forcings but also that
criticality (scale invariance) is observed over wide ranges of param-
eters, which suggests self-organization. We also show that spatial
patterns in the intertidal can provide a robust signature of local
processes and can inform about oceanographic regimes. We do so
by comparing the large-scale patterns of the simulation (scaling ex-
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ponents) with field data, which suggest that some experimental sites
are close to criticality. Our results suggest that regional patterns in
disturbed populations can be explained by local biotic and abiotic
processes submitted to oceanographic forcing.

Keywords: wave disturbance, benthic communities, lattice model, self-
organization, scale invariance, criticality.

Explaining the macroscopic properties of ecosystems from
our understanding of local interactions is a great challenge
for ecologists (Levin 1992; Milne 1998). One of the first
steps toward this goal is to identify the minimum set of
microscopic states and interactions within ecosystems that
are required to explain large-scale patterns. Theoretical
ecology has explored large-scale properties that emerge
from systems where individuals and populations interact
in space and time (Tilman and Kareiva 1997). Statistical
mechanics is also increasingly applied to ecological systems
(Kizaki and Katori 1999; Solé et al. 1999) and allows one
to identify scale-invariant properties in model ecosystems.
These theoretical efforts allow us to look for similarities
between ecological and other simple physical systems.
While models that are based on local interactions can be
tested using small-scale experiments, they also make spe-
cific predictions about large-scale dynamics and patterns
that can then be measured in the field. Most of these efforts
have been built on the assumption that local interactions
are dominated by biotic processes while environmental
complexity constrains community dynamics at larger spa-
tial scales (Bascompte and Solé 1995; Pacala and Levin
1997). Here, we present a model of wave-disturbed mussel
beds. The model is similar to forest fire models (FFM;
Drossel and Schwabl 1992; Clar et al. 1999) and models
of epidemics (Rhodes et al. 1997). We include local in-
teractions among elements of the mussel bed and between
the mussel bed and wave disturbance so that both biotic
and abiotic processes are fully described at the local level.

Theoretical models of intertidal systems have often
treated biotic disturbance as a result of biotic interactions
among species under large-scale environmental forcing
(Possingham and Roughgarden 1990). This approach pre-
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cludes the possibility of environmental complexity inter-
acting explicitly with biotic interactions at the local scale.
Individual-based and spatially explicit models, because of
their complexity, are limited to spatial extents that are
much smaller than patterns and processes associated with
wave disturbance (ones to hundreds of meters). The patch
dynamics and patch mosaic approaches applied to dis-
turbed systems (Dayton and Tegner 1984; Dayton et al.
1984) addressed this problem by simplifying space and
individual behavior into homogeneous patches that cor-
respond to disturbed areas (Levin and Paine 1974; Paine
and Levin 1981; Reise 1991) in which local interactions
are ignored.

An alternative approach that allows one explicitly to
include the local interactions of gap formation and re-
covery without restricting the spatial extent of simulations
is to aggregate individuals and species into community
elements within a lattice model where space occupancy is
defined in each cell of the lattice by a set of prede-
fined community elements. A lattice-based approach to
disturbed-systems modeling has been used to implement
mussel bed dynamics (Wilson et al. 1996; Wootton 2001)
and also simple predator-prey interactions (Tainaka 1989;
Solé and Valls 1992), FFM (Drossel and Schwabl 1992;
Clar et al. 1999; Malamud et al. 1998), and epidemics
(Keeling 2000). In these latter models, cells can be empty,
occupied by a susceptible individual (tree in FFM), or
occupied by an infected individual (burning tree in FFM).
Local interactions are then implemented as the spreading
of infected individuals to their nearest neighbors.

Critical phenomena theory has contributed to the un-
derstanding of such simple lattice models and, more gen-
erally, to the understanding of spatial patterns in inter-
acting particle systems submitted to external forcings. In
these model systems, each particle is a site defined by its
position and state on a lattice and interacts only with its
neighbors according to predefined rules. Since forcing
(control) parameters are varied across critical values, the
macroscopic state of these systems (i.e., global state var-
iables) goes through very sharp transitions, usually from
an ordered phase where all sites share the same state to a
disordered phase where states are randomly distributed
across the lattice. At the transition point (i.e., when the
control parameter is at the critical value), the system is
said to be critical, meaning that many of its properties,
such as the frequency distribution of clusters, are scale free
or scale invariant (i.e., the cluster size distribution follows
a power law function). One consequence of criticality is
the emergence of long-range (large-scale) correlation over
the lattice from local rules, since the scale-free distribution
of cluster size implies that clusters of all sizes are present
over the lattice. The scaling exponent, the exponent of
these scale-invariant distributions, provides a quantitative

signature of the local rules that regulate the system and a
means for comparing the behavior of different systems.
For some systems, such as FFM, criticality has been shown
to occur over a wide range of parameter values rather than
requiring any fine tuning of parameters that characterize
phase transitions (Malamud et al. 1998; Clar et al. 1999).
This phenomenon has been referred to as self-organized
criticality (SOC) and has been of interest in ecology to
explain the observation of scale invariance in ecological
systems (Solé and Manrubia 1995a, 1995b; Rohani et al.
1997; Kizaki and Katori 1999). We argue that this class of
system can describe wave-disturbed mussel beds, and we
more precisely explore the emergence of scale-invariant
patterns in relation to oceanographic conditions.

Along the Oregon coast, midzone intertidal commu-
nities are dominated by the mussel Mytilus californianus.
Mussels are disturbed by strong waves, mostly during win-
ter, that create gaps in the mussel bed (Paine and Levin
1981; Menge and Sutherland 1987). These gaps are col-
onized by subdominant species that facilitate or precede
recruitment by M. californianus. Because the number of
successional species is high, which can complicate spatially
explicit models, we view succession from gaps to mussel
bed as the transition between discrete community elements
or functional groups. The simplest functional grouping is
to define space as being empty or occupied by a mussel
bed (i.e., mussels and associated species). When a gap is
created by wave action, edges of the gap consist of mussels
that lost their byssal thread attachment to some of their
neighbors and to the substratum. As a consequence, edges
of a newly formed gap are temporarily unstable and more
susceptible to disturbance than are other areas of the bed
(Denny 1987). Local disturbance can then be implemented
by defining disturbed areas as newly created gaps that have
unstable edges from which wave disturbance can spread.
Although mussels may recruit into both bare space and
existing bed, the importance of conspecific density has
been shown for mussel recruitment, survival, and growth
(Svane and Setyobudiandi 1996; Helmuth 1998). Addi-
tionally, the lateral movement of adult mussels into bare
space is the primary method of recolonization immediately
following disturbance (Paine and Levin 1981). Therefore,
in this article, we explore the dynamics of a model mussel
bed system where disturbance and recovery are imple-
mented as local processes.

First, we present our model and test its local rules by
using experimental data. Then, we explore the behavior
of the lattice model over gradients of disturbance and
recovery rates. We show how local disturbance and re-
covery rules interact to produce patterns usually explained
by large-scale environmental complexity. Furthermore, we
look for signatures in spatial patterns that can be compared
with empirical data in order to quantify the potential im-
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Figure 1: A, State transition diagram where each arrow shows a possible
transition between two states in the model. B, Diagram of density-
independent (top two transitions) and density-dependent (bottom two
transitions) transition rates showing neighborhood effect. Transition
probabilities are shown for transitions between different states (see text
for symbol description). The third transition shown is from an empty
site that has one occupied neighbor (local mussel cover ; smallern p 1/82

circle) to an occupied cell. The last transition is from an occupied cell
that has at least one disturbed cell ( ) to a disturbed cell.h p 10

portance of local endogenous processes for the formation
of large-scale patterns in mussel beds. Finally, we derive
the mean-field theory to assess the role of spatial inter-
actions for mussel bed dynamics.

The Model

First, we describe a lattice model of mussel disturbance
dynamics. Although the model is applied to a wave-
disturbed intertidal system, disturbance is implemented as
a generic epidemic and could be applied to biotic distur-
bance such as predation. The model divides a whole mussel
bench into 1-m2 cells and implements local interactions
among community elements that occupy space.

Succession in Mussel Bed Communities

While Mytilus californianus is the dominant species and
ultimately wins competition for primary space occupancy
by forming beds (Paine 1966, 1984), wave disturbance
creates empty areas (gaps) and initiates a succession of
opportunistic species that occupy these gaps until mussels
recover and recolonize the available primary space (Paine
and Levin 1981). The model we present simplifies this
process by describing a succession among three states: dis-
turbed (state 0), empty (state 1), and occupied by mussels
(state 2). The disturbed state denotes newly disturbed mus-
sel beds with unstable edges (destroyed byssal threads)
where the disturbance is more likely to spread to occupied
neighbors. The disturbed state is the equivalent of burning
trees in FFM or infectious individuals in susceptible-
infective-recovered models. Specifically, it allows inclusion
of the physical disturbance as a microscopic property. The
occupied state is actually a community element that ag-
gregates species and individuals that form a mussel bed.
Transitions reflect disturbance and biological processes
(fig. 1). Empty space can be colonized by mussels through
recruitment, growth, and local movement from occupied
neighbors. The transition from occupied to disturbed oc-
curs when wave disturbance removes the mussels from the
cell. That cell remains in the disturbed state until any
mussels in neighboring cells have rebuilt their byssal
threads or become disturbed themselves, at which time
the disturbed cell stabilizes and transitions to empty (fig.
1). By using this definition of disturbed cells, we make
sure that occupied cells can be disturbed only from their
unstable edge.

Because we aggregate individuals into discrete func-
tional groups, transition rules reflect aggregated processes.
We assume that the mussel bed can colonize only empty
cells that have occupied neighbors, but we also report
results from simulations that allow global colonization.
The model allows two mechanisms for disturbance: initial

disturbance and spreading. More precisely, wave distur-
bance can affect an occupied cell that has a disturbed cell
in its neighborhood, but new disturbances can also dis-
lodge mussels from occupied cells independently of neigh-
borhood states. We assume that new disturbances affect
only one cell in order to test the influence of disturbance
spreading on gap size distribution, but we also report re-
sults from simulations that allow new disturbances to af-
fect more than one cell.

Mussel Disturbance Dynamics

The dynamics in each cell can be described as a first-order
nonlinear Markov chain with a transition matrix W that
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defines transition probabilities applied to each cell over a
lattice of size N2. Empty cells are covered by a mussel bed
with probability a2n2, where a2 is the recovery probability
and n2 is the proportion of occupied next-nearest neigh-
bors (four nearest neighbors and four neighbors along
diagonals). An occupied cell becomes disturbed with prob-
ability a0 if at least one of its neighbors is disturbed (i.e.,
if ; fig. 1).n ≥ 00

Because they impose the overall rates of disturbance and
recovery, a0 and a2 define the oceanographic forcings over
the site. Thus, we assume that a2 is a measure of pro-
ductivity (sensu Menge et al. 1997a) at the site level and
influences mussel recruitment and growth, and we assume
that a0 is a measure of wave exposure (i.e., force exerted
on the bench by an average wave) over the site.

Density-independent transition probabilities include the
probability d0 that an occupied cell becomes disturbed
(initial disturbance) when a cell is updated and the sta-
bilization of disturbed cells, which become empty with
probability 1. This means that all other transition rates are
normalized by the stabilization rate.

Thus, we compute each transition probability W(i, j) as
the sum of local and global transition probabilities so that

0 0 a h � d0 0 0 
W(t) p 1 1 � a n 0 . (1)2 2 

0 a n 1 � a h � d 2 2 0 0 0

Each entry W(i, j) of W(t) specifies the transition prob-
ability in a single cell from the state in column j (corre-
sponding to states 0, 1, 2) to the state in line i. The presence
of at least one disturbed cell in the neighborhood is defined
by h0, with if and if .h p 1 n ≥ 0 h p 0 n p 00 0 0 0

The model was simulated on a two-dimensional lattice.
We used periodic boundary conditions in order to avoid
edge effect, with lattice size . The periodic bound-N p 512
ary condition means that cells along an edge of the lattice
will have neighbors along the opposite edge. The lattice
was updated asynchronously in order to approximate a
continuous-time process (Durrett and Levin 1994). During
each simulation, cells were randomly selected for update
during 4,000 time steps, with one time step equal to N2

individual cell updates. Analysis was carried out after re-
moving the first 2,000 transient time steps. We also define

as the cover vector of disturbed (r0),C p {r , r , r }0 1 2

empty (r1), and occupied (r2) states on the lattice.

Validating the Local Rules

Artificial Gap Data

We created experimental gaps in mussel beds at three sites
along the Oregon coast (Strawberry Hill, Yachats Beach,

Boiler Bay/Fogarty Creek). We created two sets of gaps at
each site in spatially separated beds; each set consisted of
five gaps that were initially square and measured 1 m2. We
created the gaps by manually removing all mussels and
other organisms from the 1-m2 area in early spring 1996.
Reference bolts were attached in several spots inside the
gap to facilitate spatially explicit analysis of recovery. Pro-
gression of gap recovery was documented by photography
with several records taken per year through November
2000. Photographs were analyzed to record the cover of
mussels and other organisms as well as bare rock. To pro-
duce transition data, we translated each point in this time
series from percent cover estimates to one of two mutually
exclusive states by the following rules: if a cell had ≥50%
cover of adult mussels, it was considered occupied; oth-
erwise, it was considered empty. The empty state typically
consisted of bare space, barnacles, ephemeral algae, and/
or juvenile mussels. These states were recorded for the
original cell (1-m2 gap) as well as for its neighbor cells.

We computed transition rates from empty (nonmussel
cover) to occupied (mussel bed) as a function of mussel
cover in the neighborhood (n2). For each artificial gap, we
computed the ratio of the number N21(n2) of transitions
from state 1 to state 2 with the proportion n2 of neighbors
in state 2 over the number of sites in state 1 withN (n )∗1 2

n2 in state 2. If we normalize by the overall proportion of
transitions, we obtain1 r 2

TN (n )N21 2 ∗1F (n ) p , (2)21 2 TN (n )N∗1 2 21

where and are summed over all neighborhoodT TN N∗1 21

configurations. The ratio between the transition rate1 r 2
with a n2 neighborhood and the overall transition1 r 2
rate is . Thus, it is a facilitation index of each n2F (n )21 2

value for the transition, with values 11 representing1 r 2
a positive influence of n2 on the transition rate. Results
show that at the meter scale, the recovery rate between
each sampling increased with the number of occupied
neighbors (fig. 2A), from almost 1 with no occupied neigh-
bors to more than four times higher than the mean tran-
sition rate with a fully occupied neighborhood.

We also used artificial gap data to determine the tem-
poral scale of the model by computing each gap’s recovery
time. From 1996 to 2000, 63% of all gaps had recovered
to mussel bed cover. Among artificial gaps that recovered,
the average recovery time was 49 mo.

Natural Gap Data

To compare the model with the initiation and recovery of
natural mussel gaps, we used a subset of data obtained
from two sites on the Oregon coast that differed in both
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Figure 2: A, Influence of the neighborhood occupancy (n2) on recovery
rate in the artificial gap experiment, from empty to mussel bed state. B,
Proportion of occupied neighbors (n2) from 1996 to 1999, around ex-
perimental gaps (triangles) and control plots (squares) sampled from the
natural gap data (�SE). Asterisks above data show sampling dates where
significant differences between artificial gaps and controls were observed
according to a MANOVA analysis ( ).P ! .01

growth rates of mussels and wave disturbance regime. The
two sites, Boiler Bay/Fogarty Creek (44.84�N, 124.06�E)
and Yachats (44.32�N, 124.12�E), are both broad, sloping
benches with an unfragmented midintertidal zone dom-
inated by Mytilus californianus. Mussel growth rates are
higher at Yachats than they are at Boiler Bay/Fogarty Creek
because of, in part, higher food content in the waters
arriving onshore in the Yachats region (Menge et al. 1997a,
1997b). Within each site, two mussel beds were selected.
From 1996 to 1999 at Boiler Bay/Fogarty Creek and from

1997 to 1999 at Yachats, the bed and mussel gaps were
surveyed with a Topcon total station connected to an HP
256 calculator that ran TDS-48Gx software (Tripod Data
Systems) to document spatial extent and orientation of
gaps within the bed. Gaps were resurveyed every year in
the summer to record disturbances from the previous win-
ter and monitor recovery in previously surveyed gaps.
Gaps that had no newly disturbed areas within them dur-
ing the observation period were not surveyed every year.
Because of frequent gap spreading, these unsurveyed gaps
were a small proportion of the mussel bed area. Recovery
was defined by the movement of edge mussels into pre-
vious gap area or when recruited M. californianus covered
≥50% of the gap area, at which point defining gap edges
became impractical. Analysis was performed using
ArcView 3.1 (ESRI) by converting survey data to polygons
to distinguish gap and mussel bed areas. The polygon cov-
erages were then converted to grids of cell size 1 m2. Tran-
sition rates were calculated by comparing grids between
years.

For each year and at each mussel bed, we defined gap
clusters as contiguous empty areas and mussel clusters as
contiguous occupied areas. To examine the importance of
local processes, we identified each disturbed or recovered
cluster as being connected through its neighborhood or
unconnected to a cluster of the same type from the pre-
vious year. This analysis was performed from the 1996 to
the 1999 surveys. Assuming that recovered and disturbed
areas were the result of spreading in the case of connected
clusters and the result of nonlocal processes in the case of
unconnected clusters, we can use this analysis to examine
the relative importance of local processes (spreading) dur-
ing disturbance and recovery at a temporal resolution of
1 yr.

On all beds, most of disturbed and recovered areas be-
longed to connected clusters (fig. 3). Recovery was mostly
linked to existing bed clusters (96%–100% of recovered
mussel beds; fig. 3B, 3D, 3F), which suggests that some
recovery processes (recruitment, growth, predation ref-
uges) involve local positive density dependence. Distur-
bances were also correlated with existing gaps, with con-
nected disturbance being, in most cases, responsible for
at least 80% of disturbances (fig. 3A, 3C, 3E).

Spreading of new disturbances can be examined by
looking at mussel bed occupancy in the neighborhood of
artificial gaps. Because these gaps are new disturbances at
the beginning of the experiment, we used natural gap data
to compare mussel cover in the neighborhood of artificial
gaps with control areas where the mussel had not been
experimentally disturbed. Control areas were selected by
randomly sampling the GIS coverages of mussel bed. The
analysis shows that the neighborhood of new disturbances
is more likely to become empty than are control areas (fig.
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Figure 3: Disturbed (A, C, E) and recovered (B, D, F) areas shown as
a percentage of total available area (mussel bed for disturbances and gaps
for recolonization) and as connected (white) or unconnected (black) to
clusters from the previous year. Data from Boiler Bay (A, B), Fogarty
Creek (C, D), and Yachats North (E, F). Unconnected recovered areas
on graphs are shown in B, D, and F but were too small to be visible in
the figure.

2B; MANOVA repeated-measure analysis and Wilks’s sta-
tistics, ), especially during the months following theP ! .01
disturbance (see the second observation in fig. 2B, 4 mo
after artificial gaps were created). Artificial gaps were cre-
ated during the spring, and they were the only areas around
which wave disturbance was observed during the following
summer (fig. 2B; P. M. Halpin, personal observation).
While strong winter storms are responsible for most dis-

turbance events, weaker summer waves were able to spread
only along edges of artificial gaps. This result is evidence
that in the absence of strong waves (external disturbance),
only recently disturbed unstable edges can be disturbed
by average wave force. It also provides information about
the temporal scale of the stabilization process (≈1 mo).

Thus, results from artificial and natural gap experiments
show that disturbance and recovery processes in intertidal
mussel beds involve local correlation at the meter scale.
More precisely, recently disturbed areas facilitate the dis-
turbance of the neighboring mussel bed. The local pro-
cesses involved in the spreading of wave disturbance have
been discussed by Denny (1987), who suggests that lift
forces that remove a few individuals could trigger the for-
mation of larger gaps in the mussel bed. Paine and Levin
(1981) assumed that gap size was fixed at birth or sampled
after stabilization of disturbed areas. However, the high
correlation between gaps and disturbance we observed
suggests that the local processes might be important at a
smaller temporal scale than the temporal scale of field
observations. Recovery of a gap area is, in turn, facilitated
by occupied neighbors. Positive density dependence dur-
ing mussel bed recovery can be explained by observations
that show that adult mussels move laterally along edges
of gaps to occupy bare substratum (G. Allison, P. Halpin,
J. Lubchenco, and B. Menge, unpublished results). Newly
settled individuals also recruit near conspecifics (Bayne
1964) and find refuge against desiccation stress through
aggregation (Helmuth 1998).

These results support the assumption that mussel dis-
turbance dynamics can be defined at the local scale. We
now turn to the model and examine the response of mussel
cover (macroscopic property) to oceanographic gradients
of productivity (recovery rate) and exposure (disturbance
rate).

Incomplete Mussel Cover without New Disturbances

We can illustrate the behavior of the model across recovery
and disturbance rates if we dynamically close the system
by setting so that no new disturbances can reachd p 00

the bench. In that case, only the persistence of existing
disturbances present as initial conditions can prevent mus-
sels from completely covering the lattice. Although this is
an unrealistic assumption about natural systems that will
be relaxed in the next section, the simplification that results
from it allows us to examine conditions for coexistence
between disturbed and occupied sites by using a full mussel
bed cover and one initial disturbance (one disturbed cell)
as an initial condition. Using a0 and a2 as control param-
eters, we can define two conditions that lead to an ab-
sorbing state (complete mussel cover) where only occupied
sites persist. First, when the disturbance rate is below the
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Figure 4: Mean mussel cover at equilibrium (r2) in the lattice simulation
(A) and for the mean-field equations (B) as a function of recovery (a2)
and disturbance (a0) rates.

Figure 5: A, Mussel cover (r2) as a function of increasing and decreasing
recovery rate (a2). The arrows illustrate the hysteresis by showing that
starting from and progressively increasing a2, a transition occursr p 12

at . If we then progressively decrease a2 to its original value,a p 0.252

the transition will not take place until we reach . B, Correlationa p 0.0752

length (y) as a function of mussel cover r2 for a passive percolation
process.

critical value , disturbed sites that form a dis-∗a p 0.30

turbance front by spreading to neighbors and leaving be-
hind empty sites are actually unable to spread successfully
through the mussel bed. Second, for a0 large and a2 below
the critical value (for ), we observe an∗a � 0.25 a p 12 0

absorbing state (fig. 4A) that results from mussel density
being low, right behind the disturbance front. As a result,
the initial disturbance is able to spread through the initial
mussel bed cover but is not in contact with the recovering
mussels that will then cover the whole lattice without being
disturbed unless the lattice is hit by a new wave distur-
bance. In other words, because disturbance is, in this case,
much faster than recovery, the disturbance front is always
ahead and, thus, never in close enough contact with re-
covering mussels. As a consequence, the disturbance is not
able to spread back into the recovering bed and becomes
extinct after having removed the initial bed. Thus, this
absorbing state results from a separation of temporal scales
between disturbance and recovery. When the disturbance
is able to persist, mussel cover shows weak oscillations
around a mean value, as shown in figure 4A. These mean
values are quasi equilibria (sensu Day and Possingham
1995) since stochastic fluctuations in a finite-size system
will eventually drive mussels to extinction in the absence

of global colonization. However, because of density-
dependent local disturbance and the large lattice size, we
were not able to observe mussel extinctions in simulations.

It is also possible to show that the critical value ∗a2

depends on initial conditions and, thus, is associated with
hysteresis (fig. 5A). When we start the simulation with

and progressively decrease a2 below the critical∗a 1 a2 2

value, each time after reaching equilibrium (after 2,000
time steps), the absorbing state is obtained for a !2

(fig. 5A).∗a � 0.0752

Phase Transitions in an Open System

These different regimes can be characterized as phase tran-
sitions defined as a rapid change in some system’s property
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Table 1: Scaling exponent b of the cluster size distribution and mean mussel cover r2 as a function of
disturbance (a0) and recovery (a2) rates

a /a2 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1

.1:
b … … … … … … … … … 1.94
r 1 1 1 .99 .81 (.02) .65 (.04) .56 (.04) .50 (.04) .46 (.05) .41 (.04)

.2:
b … … … … … … … … … 1.99
r 1 1 1 .99 .75 (.01) .62 (.02) .54 (.02) .49 (.02) .45 (.02) .42 (.03)

.3:
b … … … … … … … … 2.02 1.99
r 1 1 1 .97 .70 (.01) .58 (.01) .51 (.01) .46 (.02) .43 (.02) .40 (.02)

.4:
b … … … … … … … 1.94 1.93 1.91
r 1 1 1 .88 .65 (.01) .54 (.01) .48 (.01) .43 (.01) .40 (.01) .38 (.01)

.5:
b … … … … … … … 1.83 1.81 1.82
r 1 1 1 .81 .62 (.01) .52 (.01) .45 (.01) .40 (.01) .37 (.01) .35 (.01)

.6:
b … … … … … … … 1.75 1.74 1.75
r 1 1 1 .76 .59 .50 (.01) .43 (.01) .38 (.01) .35 (.01) .32 (.01)

.7:
b … … … … … … 1.77 1.69 1.69 1.7
r 1 1 1 .73 .58 .48 .42 .37 (.01) .33 (.01) .31 (.01)

.8:
b … … … … … … 1.72 1.65 1.65 1.68
r 1 1 1 .71 .56 .47 .41 .36 .32 (.01) .30 (.01)

.9:
b … … … … … … 1.7 1.62 1.64 1.67
r 1 1 1 .70 .56 .47 .40 .35 .32 .29

1:
b … … … … … … 1.68 1.61 1.62 1.67
r 1 1 1 .69 .55 .46 .40 .35 .31 .28

Note: Ellipses show parameter values where an infinite cluster was observed in the cluster size distribution. We obtained r2 as

the average cover over the last 2,000 time steps ( shown in parentheses). Variability in mean mussel cover amongSD ≥ 0.01

independent runs was undetectable ( ).SE ! 0.01

(order parameter) when an external forcing (control pa-
rameter) is gradually varied across a critical value. When
applied to mussel disturbance dynamics in which we allow
new disturbances to reach the system ( ), we nowd 1 00

show that the analysis of phase transitions provides a sig-
nature of oceanographic forcing defined by a0 and a2. We
can identify a phase transition from a near absorbing state
( ) to the coexistence phase at the critical disturbancer r 12

rate and for . No transition occurs at the critical∗a a 1 00 2

recovery rate (fig. 4A) since the separation of temporal∗a2

scales between disturbance and recovery for is now∗a ! a2 2

broken by new disturbances (table 1). As a0 increases
above , gaps not only persist but also quickly increase∗a0

their ability to expand, as suggested by the fast decrease
in mussel cover above (table 1). This decrease in r2

∗a0

quickly reaches a threshold value , and the infinite∗r � 0.42

mussel bed cluster (i.e., spanning across the whole lattice)
is broken into finite size clusters (table 1). Thus, we can

define a clustering phase for characterized∗r ! r � 0.42 2

by the coexistence of empty and occupied clusters and by
the absence of an infinite mussel bed cluster.

Interestingly, the value of corresponds to the next-∗r2

nearest-neighbor percolation threshold (i.e., for q p 8
neighbors). Percolation theory provides a framework to
understand the spatial pattern and scaling properties of
lattice models (Stauffer and Aharony 1992). It can be best
understood by considering a lattice where sites can be
either occupied or empty and by defining clusters as any
set of occupied sites connected to each other through their
neighbors. As the proportion p of occupied sites increases,
larger clusters progressively form, and at some threshold
value pc (percolation threshold), one big cluster allows one
to go from one side of the lattice to the opposite side by
moving only on occupied sites (e.g., on the infinite mussel
bed). This phenomenon can be quantified by the corre-
lation length y, the average radius of mussel clusters on
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Local Interactions in Mussel Beds 897

Figure 6: Frequency (A, D), interior area t(s) (B, E), and radius of gyration R(s) (C, F) of mussel bed clusters as a function of cluster size s,F(s)
in the simulation for and (A–C) and from natural gap survey at Boiler Bay (D–F). Scaling exponents (slopes from linear regressiona p 1 a p 0.50 2

performed on log transformed data) is shown for cluster size (b), interior area (g), and the radius of gyration (m).

the lattice (Binney et al. 1992), which increases with p and
diverges at the percolation threshold pc (fig. 5B). The per-
colation threshold is for nearest-neighbor per-p p 0.5928c

colation ( neighbors around each site). For next-q p 4

nearest-neighbor percolation ( ), the percolationq p 8
threshold is (Stauffer and Aharony 1992).1 � p p 0.4072c

This value is very close to the critical mussel density ,∗r2

which suggests that the critical value defining the clustering
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phase in the mussel disturbance model (MDM) involving
local interactions is derived from a passive percolation
process obtained without local density dependence for
mussel colonization. We now look into more detail at the
large-scale properties of the lattice within the clustering
phase.

Scaling Properties

The study of critical phenomena predicts that clusters have
a scale-invariant size distribution near critical values (Bin-
ney et al. 1992). In other words, if we look at mussel
clusters when the forcing parameters are at their critical
value, the number of clusters of a given size s shouldF(s)
decrease with s according to a power law so that F(s) ∝

, where b is the scaling exponent (Binney et al. 1992).�bs
The power law characterizes scale invariance because the
ratio of small to large cluster frequencies (slope of the
power law function) is independent from the observation
scale. In the MDM, we should expect criticality when a0

and a2 are at their critical value. This scaling is expected
to vanish when the system moves away from the critical
value, because cluster frequency decays faster than pre-
dicted by the power law distribution that characterizes
scale invariance. The MDM has a well-defined clustering
phase within the parameter space, where all three types
(disturbed, empty, occupied) coexist and where the oc-
cupied state does not form an infinite cluster that spans
across the lattice. The latter condition means that at equi-
librium, the mean mussel cover is below the percolation
threshold . Within this clustering phase, mean mussel∗r2

cover is weakly influenced by a2 and a0 with 0.28 ! r !2

(table 1) and is increasing rapidly toward the absorbing0.4
state close to (fig. 4A). Within the clustering∗r p 1 a2 0

phase, spatial patterns also have properties that are almost
independent from parameter values. More precisely, we
observe scale invariance in mussel beds as shown by the
power law distribution of cluster size s (fig. 6A) withF(s)

, where . The shape of mussel�bF(s) ∝ s 1.61 ≤ b ≤ 1.99
clusters is also characteristic within the coexistence region.
We can first note that the perimeter of clusters (area in
contact with other states) increases almost as fast as does
cluster size (fig. 6B), which means that the amount of
interface per cell is conserved as cluster size increases. The
relationship between cluster perimeter and area actually
follows a power law with scaling exponent .g p 0.92
When g is close to 1, the amount of edges between mussel
clusters and gaps is maximum, compared with an expected
value of 0.5 for very compact clusters. As predicted for
systems at criticality, clusters can also be shown to be
fractal with dimension , where m is the scalingD p 1/m ! 2
exponent of the radius of gyration R(s) (average radius of
a cluster; see Binney et al. 1992) as a function of cluster

size s (fig. 6C). This scaling is observed as long as r !2

and does not vanish as control parameters (a0 and a2)0.4
are increased above their critical values.

We also tested the robustness of these results to the pres-
ence of global colonization d2—that is, of empty r

transitions that are independent from local musselmussel
density—and to larger new disturbances. We repeated sim-
ulations with and with randomly selected newd p 10d2 0

disturbance size ranging from 1 to cells. The20.01 # N
maximum size for new disturbances was set above the
maximum relative disturbance size observed in natural gap
data. For , results from this set of simulations∗a 1 a0 0

(r2 and scaling exponents) were indistinguishable
( ) from the reported results.�2difference ! 10

Large-Scale Patterns in Natural Mussel Beds

We now look for these signatures in field data. Using the
natural gap survey data, we can characterize spatial pat-
terns in each of the three natural mussel beds. The model
predicts that a mean mussel cover below is in a critical∗r2

state. This means that such a system should have long-
range correlation that can be detected by power law scaling
of the cluster size distribution and by the fractal shape of
mussel clusters with . In one of the study sites, BoilerD ! 2
Bay, mussel cover declined from 0.8 in 1996 to 0.47 in
1999 (table 2). On this bench, we observe scale invariance
in cluster size distribution with (fig. 6D) andb p 1.56
fractal clusters with (fig. 6F). Similar toD p 1/m p 1.89
simulation results, the area of cluster perimeter (the por-
tion of a mussel bed cluster that is connected to a gap)
also follows a power law distribution with scaling exponent

(fig. 6E), which is close to 1, the value expectedg p 0.91
if all sites within a cluster were part of the perimeter.

At Fogarty Creek, where mussel cover was higher than
at Boiler Bay but decreased to values close to (table 2),∗r2

a scaling could be observed for b, g, and m (table 2). The
scaling exponents measured at Fogarty Creek were similar
to those measured at Boiler Bay, but scale-invariant pat-
terns were valid up to a maximum cluster size of 12.5 m2,
which defined the maximum size of mussel clusters. The
mussel bed at Fogarty Creek was, thus, in a subcritical
state where scale-invariant patterns are constrained by a
maximum cluster size. This maximum cluster size was not
observed in Boiler Bay where the break in the power law
distribution (fig. 6D) is caused by a finite-size effect (clus-
ter size is simply limited by habitat size).

For parameter combinations that lead to mussel cover
above the critical value for clustering ( ), the modelr 1 0.42

predicts the existence of an infinite cluster, with small gaps
having a characteristic scale (no power law relationship in
cluster size distribution). These small gaps are not able to
expand their size and can persist by the balance between
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recovery and disturbance spreading of each gap. These
properties are observed at Yachats Beach, where mussel
cover was always above 0.8, and where mussel clusters had
a characteristic scale of 3.13 m2, which corresponds to the
characteristic size of clusters within gaps.

Mean-Field Theory

We now explore the behavior of the model under the
simplifying assumption of well-mixed dynamics, which
means that cells can interact with any other cell on the
lattice. In the simulation, this assumption would require
that neighbors are not limited to the eight nearest-
neighbor cells but that they be selected at random from
the whole set of sites. If we assume such a well-mixed
community, we can use the cover vector C p {r , r , r }0 1 2

of each state over the lattice instead of following the state
of each cell.

The mean-field (MF) dynamics assumes that each cell
interacts equally with all other cells on the lattice so that

, which means that andP(n p 1) p r n p r P(n ≥i i i i i

. These approximations allow space to80) p 1 � (1 � r )i
be included implicitly in the MF dynamics.

In continuous time, we obtain the following set of or-
dinary differential equations:

dr0 8p a r {d � [1 � (1 � r ) ]} � r ,0 2 0 0 0dt

dr2 8p r (a (1 � r � r ) � a {d � [1 � (1 � r ) ]}),2 2 0 2 0 0 0dt

r � r � r p 1.0 1 2

(3)

We can show numerically that system 3 has a single, locally
stable equilibrium for all values of a0 and a2 in the interval
0–1. For , the stable equilibrium is the absorbingd p 00

state when , and we observe a∗r p 1 a ≤ a p 0.1252 0 0

spiral sink equilibrium (i.e., decaying oscillations) for
(fig. 7A). It is also possible to showa /a � 0.125 1 0.62 0

that by noting that, at equilibrium,∗a p 0.1250

r0
r p (4)2 8a [1 � (1 � r ) ]0 0

and

a r (1 � r )2 2 2
r p . (5)0 1 � a r2 2

These two functions intersect at the internal equilibrium
(coexistence) as long as

r 10
a 1 Lim p . (6)0 r r0 80 1 � (1 � r ) 80

If we define as the neighborhood size, the condi-q p 8
tions for an interior equilibrium in the mean-field are,
thus, and (fig. 4B).a 1 1/q a 1 00 2

We can improve the correspondence between the MF
and the MDM simulations by noting that the MF includes
space implicitly through , approximated asP 1 �(n ≥0)0

. This approximation does not fit simulation re-8(1 � r )0

sults (fig. 7B), but it is possible to obtain a corrected
approximation by replacing the MF exponent withq p 8
the exponent fitted to simulation results as a nonlinear′q
least squares estimate. Thus, is obtained from simulation′q
results by fitting to the relationship between

′q1 � (1 � r )0

disturbed cell cover and the proportion of occupiedr q0 0/2

cells having at least one disturbed neighbor (fig. 7B). This
technique was used to approximate the first moment of
spatially explicit predator-prey models (Pascual et al.
2000). From the simulation, we obtain (fig.′q p 3.829
7B). The corrected MF now has as a∗ ′a p 1/q p 0.26120

condition for coexistence, which is closer to ,∗a p 0.30

obtained in the MDM (fig. 4A; table 1). We used to′q
approximate nearest-neighbor (i.e., between-pair) corre-
lations in the simulation. Although this technique allows
us to approximate , it still does not provide a good∗a0

approximation of mean mussel cover across the parameter
space and suggests that higher-order interactions involving
units larger than pairs dominate the dynamics.

Discussion

The Importance of Local Interactions

The study of environmental complexity often starts from
the assumption that physical disturbance imposes spatial
structure on communities. This view has been challenged
by theoretical and experimental efforts that show that local
interactions between physical complexity and biotic pro-
cesses can lead to nonintuitive large-scale patterns (Rough-
garden 1974). Our model suggests that the interaction be-
tween global and local processes can be explained without
making assumptions about the spatial structure of physical
disturbance. Many theoretical studies of disturbance dy-
namics have further assumed that physical disturbance is
a large-scale process that occurs at a much faster temporal
scale than do biotic recovery processes (but see Wilson et
al. 1996). We demonstrate that the large-scale properties
of physical disturbance can result from local interactions
and that the separation of temporal scale between distur-
bance and recovery is not a sufficient reason to ignore
local interactions.

When modeling local interactions, we need to test their
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Table 2: Mussel cover data and scaling exponents at three in-
tertidal mussel beds along the Oregon coast

Mussel cover

b g m1996 1997 1998 1999

Boiler Bay .78 .68 .57 .45 1.56 .91 .59
Fogarty Creek .85 .93 .68 .50 1.54 .91 .58
Yachats North .89 .84 .87 … … …

Note: Scaling exponents are the exponent of cluster size distribution (b),

of perimeter to area ratio (g), and of radius of gyration (m).

validity in natural systems, their ability to explain mac-
roscopic properties of communities, as well as the response
of communities to environmental forcing. Local interac-
tions in mussel beds have been suggested as an important
factor for recruitment (Petersen 1984) and predation.
Those studies have shown the differential strength of mus-
sel attachment as a function of individual size, age, and
position (Bell and Gosline 1997; Hunt and Scheibling
2001). The rationale for uncoupling wave disturbance
from biotic interactions comes from the assumption that
wave disturbance should influence communities at a larger
spatial scale and at a much faster rate than do biotic in-
teractions that lead to recolonization. First, our results
show that disturbances are highly connected, which chal-
lenges the assumption that the spatial structure of wave
disturbance is independent from local spreading processes.
Second, our model shows that local interactions between
disturbance and recovery have nontrivial consequences for
mussel bed dynamics even if temporal scales of disturbance
and recovery are separate. This is revealed by the persis-
tence of scale-invariant cluster size distribution even when
disturbance and recovery rates are very different. Actually,
the separation of temporal scales has been shown to be
the sufficient condition for SOC in disturbance models
that are based on local interactions (Rhodes et al. 1997;
Clar et al. 1999).

Many physical variables, including wave force, have a
spatial structure at the large scale. This spatial correlation
in physical stress has been shown to be responsible for
biological patterns in many systems. Our model suggests
that abiotic disturbance with no macroscopic structure can
generate long-range correlation in communities and that
the influence of environmental complexity is not inde-
pendent of local biotic interactions and does not simply
modulate biotic processes. Our results were also robust to
the presence of external disturbances with variable size as
long as spreading processes are dominant, which was sup-
ported by field data.

Percolation Theory and the Extremum Principle

Scale invariance has been observed for gap distribution in
tropical forests (Kubo et al. 1996). Theoretical studies have

also suggested mechanisms that lead to scale invariance in
simple predator-prey models (Pascual et al. 2002) and in
terrestrial ecosystems (Kizaki and Katori 1999; Hubbell
2001). However, scale invariance associated with phase
transitions usually requires fine-tuning of model param-
eters (Binney et al. 1992) and has been shown in mussel
disturbance models in which the disturbance is not an
explicit state (Wilson et al. 1996). We still need to un-
derstand how communities can self-organize in this critical
state under variable environmental conditions. Forest fire
models with global tree growth showed that adding an
explicit (spreading) disturbance state to lattice models al-
lows us to observe scale invariance without having to fine-
tune parameter values, given that disturbance propagation
is much faster than growth, which should, in turn, be
much faster than external disturbances (i.e., double sep-
aration of temporal scales). Our results show that with
both growth and disturbance being explicit and local, scale
invariance depends only on one separation of temporal
scales, namely that disturbance propagation be much faster
than external disturbances. This was suggested for other
ecological systems with similar antagonistic interactions
(Pascual et al. 2002). When imposing a double separation
of temporal scales on antagonistic local interactions, So-
colar et al. (2001) showed that an additional nonlocal mor-
tality is required in order to observe criticality. The mor-
tality rate at which criticality is observed has also been
shown to be an evolutionary stable strategy (Socolar et al.
2001). Our results suggest that self-organized criticality is
observed without a slow evolutionary process if the tem-
poral scales of local disturbance and growth are not
separate.

We now need to explain the dynamical properties that
constrain our model in a critical state. We showed that
where scale invariance is observed, mussel cover is close
to the percolation threshold. This threshold simply defines
the cover at which it becomes possible to cross the lattice
by walking on a single “infinite” mussel cluster. Interest-
ingly, this threshold is not influenced by the correlation
structure of occupied sites, and the spatially correlated
colonization process percolates at the same value as does
random colonization, as observed for forest gap models
(Kubo et al. 1996). Percolation theory can explain why a
system reaches criticality, but it does not provide a com-
plete framework to explain how the system self-organizes
itself to this state as parameters are varied. Parameter val-
ues that allow the disturbance to persist result in mean
mussel cover being maintained close to the percolation
threshold. When gaps are able to spread, mussel beds can-
not grow to form an infinite cluster because disturbance
would then be able to percolate through the lattice. The
mean mussel cover within the clustering phase is con-
strained by the ability of disturbance to percolate through
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Figure 7: A, Parameter space for the mean-field model showing stability
regimes (solid lines) as a function of disturbance (a0) and recovery (a2)
rates. B, Simulation results for the relationship between proportion of
occupied cells having at least one disturbed neighbor ( ) as a functionq0/2

of disturbed cell cover (r0). Lines show the relationship for the fitted
exponent q� (dashed line) and for (solid line). Using the R statisticalq p 8
package, q� was obtained as a nonlinear least squares estimate. Simulation
results were obtained using and .a p 1 a p 0.50 2

the contiguous bed. Thus, mussel cover is limited to its
minimum value, just below the site percolation threshold.
This process has been referred to as the extremum prin-
ciple and has been used to explain SOC in FFM (Drossel
and Schwabl 1992). Since the percolation threshold defines
mussel cover at criticality and depends on the neighbor-
hood size, it could provide an additional tool to charac-
terize local spreading in ecological systems from large-scale
cover data.

Signatures of Oceanographic Regimes

High levels of variability in populations and communities
along apparently smooth and mild environmental gradi-
ents are widely observed and are explained by unmeasured
environmental complexity or by spatial interactions
among populations (metapopulation dynamics). We show
that threshold phenomena that lead to phase transitions
and criticality can explain sharp changes in uncoupled and
open populations along continuous gradients of recovery
and disturbance rates. By defining all the properties of
mussel bed dynamics at the local level, we can predict
large-scale properties that are characteristic of the ocean-
ographic forcing (recovery and disturbance). Using a sim-
ilar model calibrated at one study site, Wootton (2001)
accurately predicted observed mussel cover (0.65–0.7) and
patterns with a characteristic scale, both compatible with
the noncritical region of the a0 and a2 parameter space
in our model.

Experimental studies have explained the structure of
benthic communities as a consequence of local biotic
interactions and large-scale oceanographic variability
(Menge and Sutherland 1976; Dayton et al. 1992; Menge
1995). While this dual explanation of community structure
is linked to the problem of species interactions (top-down
effects, competition) versus bottom-up (large-scale ocean-
ographic forcing) control of intertidal communities
(Menge 1992, 2000), our model illustrates the causal sym-
metry between large-scale and local processes (Auyang
1998). More precisely, macroscopic properties of mussel
benches emerge from local biotic and abiotic processes
and can be predicted only from the knowledge of scaling-
up mechanisms. The local interactions are themselves con-
strained by these emerging properties and by oceano-
graphic forcing that occurs at a much larger scale. This
first suggests that the distinction between biotic and abiotic
processes should not be used as an indicator of the spatial
scales at which these processes occur since local interac-
tions involving physical disturbance generate long-range
correlation in spatial patterns. It also means that it is not
sufficient to understand how large-scale bottom-up factors
such as food/larval concentration and flow regime control
small-scale biotic interactions (Nielsen 2001). We must

also determine how these processes interact spatially and
scale-up to generate community structure and dynamics
at the site level. Our model provides a simple framework
to address this “bottom-up effects on top-down control”
across scales (Menge et al. 1997a).
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Our results also have important consequences for the
management of coastal habitats. We first showed how dis-
turbance dynamics can lead to self-organized patterns and
to long-range correlation in benthic communities. Ocean-
ographic conditions that allow self-organization can be
defined using critical values and simply require that mus-
sels can colonize the habitat and that disturbances can
expand across mussel beds. Under these oceanographic
conditions and because of emerging large-scale correla-
tions, local human impacts could affect regional properties
and dynamics of coastal systems at scales limited only by
habitat fragmentation. Although not all oceanographic re-
gimes should lead to scale invariance, we also showed that
mussel abundance can change dramatically as oceano-
graphic conditions change progressively across critical val-
ues. Moreover, these critical oceanographic conditions at
which changes in mussel cover are observed further de-
pend on their direction (hysteresis; fig. 5). This suggests
that community structure should not be expected to return
to its initial state following temporary global changes
across critical values, such as El Niño–La Niña oscillations
or habitat restoration.
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