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Synopsis Species distribution models typically use correlative approaches that characterize the species–environment

relationship using occurrence or abundance data for a single species. However, species distributions are determined by

both abiotic conditions and biotic interactions with other species in the community. Therefore, climate change is

expected to impact species through direct effects on their physiology and indirect effects propagated through their

resources, predators, competitors, or mutualists. Furthermore, the sign and strength of species interactions can change

according to abiotic conditions, resulting in context-dependent species interactions that may change across space or

with climate change. Here, we incorporated the context dependency of species interactions into a dynamic species

distribution model. We developed a multi-species model that uses a time-series of observational survey data to

evaluate how abiotic conditions and species interactions affect the dynamics of three rocky intertidal species. The

model further distinguishes between the direct effects of abiotic conditions on abundance and the indirect effects

propagated through interactions with other species. We apply the model to keystone predation by the sea star Pisaster

ochraceus on the mussel Mytilus californianus and the barnacle Balanus glandula in the rocky intertidal zone of the

Pacific coast, USA. Our method indicated that biotic interactions between P. ochraceus and B. glandula affected B.

glandula dynamics across >1000 km of coastline. Consistent with patterns from keystone predation, the growth rate of

B. glandula varied according to the abundance of P. ochraceus in the previous year. The data and the model did not

indicate that the strength of keystone predation by P. ochraceus varied with a mean annual upwelling index. Balanus

glandula cover increased following years with high phytoplankton abundance measured as mean annual chlorophyll-a.

M. californianus exhibited the same pattern to a lesser degree, although this pattern was not significant. This work

bridges the disciplines of biogeography and community ecology to develop tools to better understand the direct and

indirect effects of abiotic conditions on ecological communities.

Introduction

Species distribution models typically use correlative

approaches that characterize the species–environment

relationship using occurrence or abundance data for a

single species (Guisan and Zimmermann 2000). These

models are often used to forecast changes in species’

geographic distributions in response to climate change

(Hijmans and Graham 2006). Such forecasts inform

conservation and management decisions including re-

serve design, assisted migration, and adaptive

management. In essence, all species distribution mod-

els project the realized niche onto geographic space

(Pulliam 2000; Sober�on 2007; Peterson et al. 2011). As

the realized niche reflects the range of abiotic condi-

tions and biotic interactions under which a species

can persist (Hutchinson 1957), it is essential that

both abiotic conditions and species interactions be

incorporated into species distribution models

(Guisan and Thuiller 2005; Schurr et al. 2012;

Warton et al. 2015; Thorson et al. 2016).
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Species interactions such as competition, preda-

tion, and facilitation can be just as important as

the environment in structuring communities across

scales (Connell 1961b; Paine 1966; Leibold et al.

2004; Holyoak et al. 2005; Gross 2008). For example,

in marine systems, consistent spatial patterns of

community structure across rocky intertidal zones

arise due to the joint effects of species interactions

and the environment (Connell 1961b, 1970; Paine

1966, 1984; Dayton 1971; Menge and Sutherland

1976; Lubchenco and Menge 1978). Specifically, the

distribution of species is limited by predation and

competition in the lower intertidal (Connell 1961b;

Paine 1966) and desiccation stress in the upper in-

tertidal (Connell 1961a). Within the zone located

between the lower and upper intertidal, competition

(Connell 1961a, 1970; Dayton 1971; Menge and

Sutherland 1976; Paine 1984), keystone predation

(Paine 1966; Dayton 1971; Menge and Sutherland

1976; Lubchenco and Menge 1978), and disturbance

(Dayton 1971; Sousa 1979) dictate community struc-

ture. Positive interactions can also affect community

structure by ameliorating stressful abiotic conditions

(Turner 1983; Menge 1976). If an inferior competi-

tor facilitates recruitment by a superior competitor,

the resulting refuges in space permit the inferior

competitor to persist (Gouhier et al. 2011).

The relative importance of competition, preda-

tion, and facilitation changes along abiotic gradients

(Menge and Sutherland 1987; Bruno et al. 2003). As

a result, species interactions could change in sign or

magnitude along abiotic gradients, across a species’

range or with climate change (Davis et al. 1998;

Sanford 1999; Callaway et al. 2002; Tylianakis et al.

2008; Milazzo et al. 2013; Zarnetske et al. 2017).

Furthermore, species may not exhibit the same re-

sponse to abiotic conditions, and therefore climate

change may have a distinct impact on each species

and their interactions with the rest of the commu-

nity (Gilman et al. 2010).

Here, we incorporate the context dependency of

species interactions into a dynamic multi-species dis-

tribution model. We focus on how the strength of

species interactions changes according to abiotic

conditions for two reasons: (1) species interactions

vary most along spatial and abiotic gradients

(Chamberlain et al. 2014), and (2) we can use this

variation to better understand the potential effects of

climate change on ecological communities. We use a

time series of observational survey data across a spa-

tially extensive network of sites and a dynamic

multi-species model to evaluate how abiotic condi-

tions and species interactions affect the dynamics of

three rocky intertidal species. These data and the

model are also used to distinguish between the direct

effects of abiotic conditions on changes in abun-

dance and the indirect effects propagated through

interactions with other species.

A brief overview of species distribution
models

A wide variety of methods have been used for species

distribution modeling. At one end of the spectrum

are mechanistic models, in which physiological pro-

cesses such as metabolism, growth, and mortality

give rise to the distribution of species (Kearney

and Porter 2009). They can yield highly accurate

distribution maps and allow us to understand the

processes that give rise patterns of abundance (e.g.,

Chuine and Beaubien 2001). However, these meth-

ods can only be deployed for species whose biology

and ecology have been extremely well studied. At the

other end of the spectrum, machine learning tech-

niques such as random forests and boosted regres-

sion trees can be used to model complex

relationships for a wide variety of species (Cutler

et al. 2007; Elith et al. 2008). Although these

approaches can yield accurate predictions, they do

not explicitly model the underlying ecological

processes.

Statistical models can bridge the two ends of the

spectrum (Dormann et al. 2012). These models de-

scribe the relationship between occurrence or abun-

dance and covariates that quantify habitat

characteristics, climate, or in some cases, the abun-

dance of other species in the community. They

quantify the species–environment relationship, and

model parameters correspond to hypotheses about

how environmental covariates determine distribution

and abundance, albeit phenomenologically (Guisan

and Zimmermann 2000; Elith and Leathwick 2009).

Multivariate statistical models account for depen-

dence among species in a community, which encom-

passes both species interactions and shared responses

to unmeasured covariates (Kissling et al. 2012;

Pollock et al. 2014).

Traditional species distribution models lack a tem-

poral dimension that is often essential for detecting

and incorporating species interactions (Wisz et al.

2013). In contrast to traditional static species distri-

bution models, dynamic modeling approaches focus

on the effect of abiotic conditions and species inter-

actions on demographic rates (Dennis et al. 2006;

Schurr et al. 2012). Therefore, they estimate the re-

alized niche of a species (Schurr et al. 2012). In a

multivariate setting, such models can also estimate

pairwise species interactions from observational data
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(Mutshinda et al. 2009, 2011). Model parameters

correspond to the dynamic processes that determine

species’ niches, and structure populations and commu-

nities (Pagel and Schurr 2012). Thus, dynamic models

further bridge the continuum between process-based

models and traditional statistical approaches.

Incorporating the context dependency
of species interactions

In the dynamic multivariate models described above,

the sign and magnitude of species interactions are

fixed and do not vary in space or time. However,

species interactions are context dependent

(Chamberlain et al. 2014). To address this limitation,

we capture the spatial and temporal variability by

relaxing the modeling assumption that species inter-

action coefficients are fixed, and instead allow the

interaction coefficients to differ by location and

time because the abiotic context differs. The model

specifies an equation for each pairwise species inter-

action describing the process by which an abiotic

covariate can affect the sign and magnitude of the

interaction coefficient. An abiotic covariate (e.g.,

precipitation or temperature) can have a direct effect

on population growth rate or an indirect effect prop-

agated through interactions with other species in the

community.

We modified the dynamic multivariate model de-

scribed by Mutshinda et al. (2011) that contains a

multi-species population dynamics kernel as well as

terms describing how abiotic variables affect popula-

tion growth rate. Our modification extends the

Mutshinda et al. (2011) model to accommodate

multiple sites, and a hierarchical process is specified

to capture possible interactions that may vary based

on abiotic conditions. Let ni,t,s denote the natural

logarithm of the observed abundance for each spe-

cies i¼ 1 . . . N at time t and site s. The log-

abundance of species i at time t and site s is

ni;t ;s ¼ ni;t�1;s þ rið1�
XN

j¼1

ai;jnj;t�1;s=kiÞ þ bi;1X1;t ;s

þ bi;2X2;t ;s þ si;t ;s;

where ri is the intrinsic growth rate and ki is the

natural logarithm of the carrying capacity of species

i. ai,j is the interaction coefficient quantifying the

effect of species j on species i.

X1,t,s and X2,t,s represent abiotic covariates specific

to time t and site s. bi,1 and bi,2 are species-specific

coefficients describing the effect of the abiotic covar-

iates on the growth rate of species i. The residual

error si,t,s is modeled with a multivariate normal

distribution with mean vector 0 and variance–covari-

ance matrix R.

To model the context dependence of species inter-

actions, we allow each pairwise interaction coefficient

to vary by site and time and include a linear term

describing how an abiotic covariate X3,t,s may affect

the interaction strength. Therefore, at,i,j,s¼ b0
i;j þ b1

i,j

X3,t,s for all j 6¼ i. There are N(N � 1) possible pair-

wise species interactions, and we set at,i,i,s¼ 1. Each

b0
i;j is a pairwise species interaction coefficient be-

cause the covariates are mean-centered and standard-

ized to unit variance. Each b1
i;j captures the variability

of the effect of species j due to the abiotic covariate

X3,t,s.

Case study: keystone predation in rocky
intertidal ecosystems of the California
current large marine ecosystem

Study system

The rocky intertidal ecosystem comprises an ideal

case study to illustrate this model because species

interactions are strong in this system (Paine 1966,

1974) and depend on the abiotic context (Menge

and others 1994, 2004). Preferential predation by

the sea star Pisaster ochraceus on the mussel Mytilus

californianus is known to promote coexistence be-

tween M. californianus and subordinate competitors

(e.g., Paine 1966, 1974). Experimental work has

shown that the strength of keystone predation by P.

ochraceus on M. californianus changes according to

abiotic conditions (Menge et al. 1994; Sanford

1999). For example, in field and laboratory studies

Sanford (1999) showed that during periods of up-

welling that were accompanied by cooler sea surface

temperatures (SSTs) individual P. ochraceus con-

sumed fewer M. californianus, and there were fewer

P. ochraceus present. Abiotic conditions are also

known to have direct effects on M. californianus

and their barnacle competitors. Mytilus californianus

grew faster in the warmer, more productive areas of

their distribution that experienced intermittent up-

welling (Menge et al. 2008). SST, upwelling, and phy-

toplankton abundance (measured as chlorophyll-a

concentration) are also known to affect mussels and

barnacles at different spatial and temporal scales

(Gouhier et al. 2010; Menge et al. 2015).

Data

To illustrate the method for incorporating the context

dependency of biotic interactions into species distri-

bution models, we focused on a three-species com-

munity module: keystone predation by P. ochraceus

on the mussel M. californianus and the barnacle

Context dependent species interactions 161
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Balanus glandula (Fig. 1). Data were gathered in the

lower intertidal zone at 32 study sites in the

California current large marine ecosystem. The study

sites spanned approximately 12.5 degrees latitude

(>1000 km) from Cape Flattery, WA to Point

Piedras Blancas, CA (Fig. 2). Sites were surveyed an-

nually during the summer months using a transect-

quadrat method (Schoch et al. 2006; Gouhier et al.

2010) from 2000 to 2004. Counts of P. ochraceus and

cover of M. californianus and B. glandula were re-

corded in 10 haphazardly placed 0.25 m2 quadrats

along each of three 50 m transects in the lower in-

tertidal zone. Counts of P. ochraceus and % cover of

M. californianus and B. glandula in each site-year were

summed across all quadrats and ln(xþ 1) trans-

formed prior to analysis.

Abiotic covariates were obtained for each site-year

and validated as in Gouhier et al. (2010). Mean an-

nual SST (�C) was obtained from the advanced very

high resolution radiometer (National Oceanic and

Atmospheric Administration), chlorophyll-a concen-

tration (chl, mg/m3) from the sea-viewing wide field-

of-view sensor (National Aeronautics and Space

Administration), and upwelling index (upw, m3/s/

100 m of coastline) from sea level pressure maps

(Pacific Fisheries Environmental Laboratory)

(Gouhier et al. 2010). Data on SST and

chlorophyll-a concentration occurred within a 0.2�

radius of each study site, and upwelling data oc-

curred within a 1� radius of each site. Mean annual

upwelling and mean annual SST were weakly, posi-

tively correlated (r¼ 0.31), and both tended to de-

crease with latitude (Fig. 3). Chlorophyll-a tended to

increase with latitude (Fig. 3), and was negatively

correlated with both mean annual upwelling

(r¼�0.33) and mean annual SST (r¼�0.50).

Abiotic covariates were mean centered and standard-

ized to unit variance prior to analysis.

Model

The following model captures the effects of abiotic

covariates and species interactions on the dynamics

of each species, as well as the way the strength of

species interactions may vary with upwelling. Let

ni,t,s denote the ln(xþ 1) transformed abundance

for each species i at time t and site s. Here, i¼ 1

for M. californianus, i¼ 2 for B. glandula, and i¼ 3

for P. ochraceus. The abundance of species i at time t

and site s on a logarithmic scale is

ni;t ;s ¼ ni;t�1;s þ rið1�
X3

j¼1

at ;i;j;snj;t�1;s=kiÞ þ bi;1sstt�1;s

þ bi;2chlt�1;s þ si;t ;s;

SST (sstt�1,s) and mean annual chlorophyll-a con-

centration (chlt�1,s) in the previous year could di-

rectly affect the population growth rate of each

species (Gouhier et al. 2010). The hierarchical pro-

cess at,i,j,s¼ b0
i;j þ b1

i;j upwt�1,s for all j 6¼ i represented

species interactions. Each of the six b0
i;j estimate a

pairwise interaction strength because the covariates

Fig. 1 Sea stars Pisaster ochraceus feeding on mussels Mytilus

californianus and gooseneck barnacles Pollicipes polymerus at

Strawberry Hill, OR. Acorn barnacles (Semibalanus cariosus,

Balanus glandula, Chthamalus dalli) can be seen attached to some

of the mussel shells. Sea stars are �20–30 cm in diameter.

Fig. 2 Thirty-two sites located in the California current large

marine ecosystem (Washington, Oregon and California, USA)

were surveyed in 2000–2004.

162 N. K. Lany et al.
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were mean-centered. Each of the six b1
i;j describe the

slope of the linear relationship between interaction

strength and mean annual upwelling, upwt�1,s.

We obtained inference in a Bayesian framework

using the statistical software JAGS (Plummer 2003)

and R (R Development Core Team 2015). Vague

priors were assigned as in Mutshinda et al. (2011).

We placed a Wishart prior with degrees of freedom

equal to the number of species and N � N identity

matrix as scale on the inverse of the covariance ma-

trix R.

We assigned ri and ki independent normal priors

N(0,1) and N(0,10), respectively, truncated to be

positive. Each bi was independently assigned a

N(0,100) prior. Each b0
i:j and b1

i;j was independently

assigned a N(0,1) prior. The model was run for

60,000 iterations, and the first 10,000 were discarded

as burn in. Diagnostics indicated model convergence

(Gelman–Rubin convergence diagnostics <1.01).

Results and discussion

Our method indicated that interactions between P.

ochraceus and B. glandula affected their dynamics

across the study area. The growth rate of B. glandula

varied according to the abundance of P. ochraceus in

the previous year. The coefficient describing this in-

teraction (b0
2,3) was negative (Fig. 4), which indi-

cates that B. glandula increased in abundance

(cover) following a year with higher P. ochraceus

abundance due to the negative sign in Equation

(2). One explanation for this pattern is that P. ochra-

ceus preferentially fed on M. californianus, releasing

B. glandula from competition with M. californianus

(Paine 1966, 1974).

The model indicated that mean annual upwelling

did not have a significant effect on the strength of

the effect of P. ochraceus on B. glandula (b1
2,3,

Fig. 4). In fact, the mean annual upwelling index

did not have a strong effect on any of the species

interactions included in this model (Table 1).

However, fine-scale field and laboratory studies

have shown that the strength of keystone predation

varies according to conditions associated with up-

welling (Menge et al. 1994) and species interactions

are highly context dependent in this system (Menge

et al. 1994, 2004). The coarse resolution of the abi-

otic variables used in this study likely led to discrep-

ancy between the remotely sensed, broad scale data,

and the local conditions actually experienced by in-

dividual organisms at each site. Error in predictor

variables is a common source of uncertainty in spe-

cies distribution models (Stoklosa et al. 2015) and

highlights the importance of gathering fine-scale data

on the environmental conditions experienced by or-

ganisms. Methods for incorporating uncertainty in

predictor variables interpolated from coarse resolu-

tion, gridded environmental data are discussed in

Stoklosa et al. (2015). Even so, the effect of

M. californianus on the growth rate of B. glandula

tended to get weaker as upwelling decreased,

Fig. 3 Mean annual upwelling index (A, m3/s/100 m of coastline),

mean annual sea surface temperature (B, SST, �C), and mean

annual chlorophyll-a concentration (C, mg/m3) at each of 32

rocky intertidal sites in Washington, Oregon and California, USA,

overall years of study (2000–2004).

Context dependent species interactions 163
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although this was not significant based on the 95%

credible interval (Fig. 4, Table 1). This posterior es-

timate (b1
2,1) indicates that the model can distin-

guish the indirect effects of upwelling on growth

rate, propagated through interactions with other spe-

cies in the community.

The dynamics of the filter feeding species were

related to phytoplankton abundance, measured as

remotely sensed chlorophyll-a. The growth rate of

B. glandula was greater following years with high

mean annual chlorophyll-a (Fig. 5). Mytilus califor-

nianus exhibited the same pattern to a lesser degree,

although this was not significant based on the 95%

credible interval (Fig. 5). However, mean annual

chlorophyll-a did not have a significant effect on

the growth rate of P. ochraceus (Fig. 5). These results

align with the ecology of each species. Mean annual

SST did not have a significant effect on the dynamics

of any of the three species (Table 1). The posterior

mean estimates and 95% credible intervals for all

model parameters are given in Table 1.

The growth rates of all three species exhibited syn-

chrony that was not explained by the processes

included in the model. Residual covariance was pos-

itive for all three species pairs (Table 1).

This covariance could be caused by synchronous re-

sponses to unmeasured covariates. For example,

Fig. 4 Posterior distribution of coefficients describing the inter-

action strength between each predator–prey pair (left column)

and the variability of interaction strength due to mean annual

upwelling (right column). The top row shows the effect of

Pisaster ochraceus on Balanus glandula, and the second row shows

the effect of the Mytilus californianus on Balanus glandula. Images

courtesy of the Integration and Application Network, University

of Maryland Center for Environmental Science (ian.umces.edu/

symbols/).

Table 1 Posterior mean estimates and 95% credible intervals for

the model parameters in the keystone predation model

Parameter Mean Credible interval

Abiotic covariates

b1,1 0.013 (�0.211, 0.238)

b2,1 �0.005 (�0.188, 0.177)

b3,1 0.008 (�0.163, 0.175)

b1,2 0.082 (�0.030, 0.210)

b2,2 0.216 (0.115, 0.345)

b3,2 �0.028 (�0.114, 0.056)

Population dynamics

Interaction coefficients

b0
2,1 �0.075 (�0.249, 0.107)

b0
3,1 0.106 (�0.348, 0.919)

b0
1,2 0.213 (�0.549, 1.140)

b0
3,2 �0.206 (�0.736, 0.458)

b0
1,3 �0.030 (�0.930, 1.029)

b0
2,3 �0.272 (�0.535, �0.012)

Context dependence of interactions

b1
2,1 �0.081 (�0.069, 0.232)

b1
3,1 0.001 (�0.450, 0.479)

b1
1,2 0.079 (�0.640, 0.829)

b1
3,2 �0.004 (�0.482, 0.376)

b1
1,3 �0.319 (�1.133, 0.518)

b1
2,3 0.005 (�0.158, 0.158)

Other

r1 0.568 (0.136, 1.062)

r2 1.579 (1.130, 2.024)

r3 0.519 (0.095, 0.940)

k1 2.789 (0.807, 5.719)

k2 2.282 (1.684, 2.917)

k3 2.034 (0.770, 4.537)

Residual

Variance

R1,1 1.38 (1.06, 1.78)

R2,2 0.84 (0.65, 1.09)

R3,3 0.75 (0.57, 0.97)

Covariance

R1,2 0.21 (0.02, 0.42)

R1,3 0.33 (0.15, 0.54)

R2,3 0.35 (0.21, 0.53)

Notes: Species 1 is Mytilus californianus, species 2 is Balanus glandula,

and species 3 is Pisaster ochraceus. Parameters are defined in the case

study.
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variability in abiotic conditions is not reflected in the

annual averages used in this analysis, but is known

to affect species dynamics (Menge et al. 2004; Menge

and Menge 2013). Residual dependence between spe-

cies could also arise from shared responses to habitat

characteristics that were not modeled (Pollock et al.

2014). Using a multi-species modeling approach that

accounts for residual dependence between species

improves prediction accuracy (Clark et al. 2014).

Additionally, dispersal affects the population dynam-

ics of M. californianus, and can synchronize dynam-

ics across large spatial scales (Gouhier et al. 2010),

but was not included in the model.

Conclusion

This proposed method for incorporating the context

dependency of species interactions into dynamic spe-

cies distribution models has several applications. It

permits estimation of the way abiotic conditions af-

fect the sign and magnitude of species interactions

using a time series of abundance observations made

at a spatially extensive network of sites. Abiotic co-

variates can affect abundance directly and indirectly

via species interactions. Distinguishing the direct and

indirect effects of abiotic conditions will improve

understanding of the potential effects of global

change on ecological communities (Gilman et al.

2010). Long-term data collected across spatial or abi-

otic gradients using standardized methods are essen-

tial for understanding the direct and indirect effects

of global change. Coordinated inventory and moni-

toring programs are an important source of data.

Using these methods, results from observational

data gathered at broad spatial scales can complement

fine-scale field and laboratory experiments. This

work bridges the disciplines of community ecology

and biogeography to develop tools to better under-

stand the indirect effects of abiotic conditions, and

therefore of climate change, on the distribution and

abundance of organisms.
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