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Abstract. Disentangling the effects of dispersal and environmental heterogeneity on biodiversity is a
central goal in ecology. Although metacommunity structure can be partitioned into spatial and environ-
mental fractions, it remains unclear whether these statistical results can be used to infer the relative impor-
tance of dispersal limitation (spatial fraction) and environmental forcing (environmental fraction). Using
an environmentally forced, spatially explicit metacommunity model, we show that the distinct effects of
the mean (advection) and the standard deviation (diffusion) of the dispersal kernel on biodiversity are not
easily detectable via variation partitioning alone. Although increasing dispersal ultimately leads to a
decrease in the spatial fraction due to reduced dispersal limitation and greater species sorting, the magni-
tude of the spatial fraction depends on the complex interplay between the nature of dispersal and the type
of boundary conditions in the metacommunity. Indeed, metacommunities characterized by either high or
low dispersal can exhibit a small spatial fraction. A case study of a marine metacommunity experiencing
strong alongshore transport is consistent with these findings, as the size of the spatial fraction is not associ-
ated with dispersal. Overall, our results suggest that accounting for the nature of environmental forcing as
well as the multifactorial effects of dispersal is critical for understanding how ecological and environmental
processes give rise to biodiversity across spatial scales.
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INTRODUCTION

Species abundance distributions are driven by
a combination of abiotic and biotic processes
operating at multiple spatial and temporal scales
(Leibold et al. 2004, Holyoak et al. 2005).
Although uncontroversial today, this synthetic
perspective evolved from ardent and recurring
debates about the relative influence of biotic
(Elton 1927, Nicholson 1933) and abiotic (Grin-
nell 1917, Davidson and Andrewartha 1948,
Andrewartha and Birch 1954) processes on pat-
terns of species diversity and population dynam-
ics (reviewed by Coulson et al. 2004). For

instance, pioneering work by Grinnell (1917)
showed that species often track the geographical
distribution of environmental conditions that
characterize their habitat. In doing so, the Grin-
nellian niche perspective emphasized the impor-
tance of environmental heterogeneity as a driver
of species abundance. This purely abiotic defini-
tion of the niche, which suggested a unidirec-
tional effect of the environment on species, was
later extended by Charles Elton, who highlighted
the importance of biotic processes and the recip-
rocal feedbacks between species and their envi-
ronment in dictating community structure (Elton
1927). A similar but more acrimonious argument
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emerged about the drivers of population dynam-
ics, with Andrewartha and Birch (1954) champi-
oning the role of density-independent abiotic
factors such as temperature and Nicholson (1933)
arguing for the dominance of density-dependent
biotic interactions such as competition.

Although these debates initially focused on the
relative importance of biotic and abiotic pro-
cesses at local scales, the role of regional factors
such as dispersal began to garner greater atten-
tion following the development of island bio-
geography (MacArthur and Wilson 1967). By
modeling how species diversity on islands could
depend on the balance between regional immi-
gration from the mainland and local extinction
rates, MacArthur and Wilson laid the foundation
for metacommunity theory (Levins and Culver
1971, Hastings 1980, Tilman 1994), a framework
which depicts ecological systems as sets of dis-
crete communities of interacting species linked
by dispersal (Leibold et al. 2004, Holyoak et al.
2005). Metacommunities are thus ideal for under-
standing how biotic and abiotic processes operat-
ing at multiple scales interact to give rise to
patterns of biodiversity.

Modern theory has identified four main meta-
community perspectives based on the relative
influence of local vs. regional (a)biotic factors on
the distribution of species (Leibold et al. 2004,
Holyoak et al. 2005). The patch dynamic per-
spective stresses the importance of tradeoffs
between local and regional biotic processes as
the drivers of community structure (Levins and
Culver 1971, Tilman 1994). For instance, an inter-
specific competition–colonization tradeoff can
allow an arbitrary number of species to persist
on a single resource in a spatially structured but
environmentally homogeneous habitat (Tilman
1994). On the other hand, the species sorting per-
spective focuses on the effect of spatial environ-
mental heterogeneity in dictating the distribution
of species. Specifically, by assuming that disper-
sal allows species to reach patches characterized
by their preferred environmental conditions, this
perspective emphasizes niche separation due to
local competitive exclusion over spatial rescue
effects (Leibold et al. 2004, Holyoak et al. 2005).
The mass effects approach also considers patches
to be environmentally heterogeneous but
assumes that dispersal is sufficiently high to gen-
erate spatial dynamics that override local

competitive exclusion (Leibold et al. 2004,
Holyoak et al. 2005). Indeed, when dispersal is
high, the movement of individuals from source
patches characterized by good environmental
conditions can allow species to persist in sink
patches characterized by poor environmental
conditions (Pulliam 1988, Amarasekare and Nis-
bet 2001, Holyoak et al. 2005). Such source–sink
dynamics can alter patterns of biodiversity in
metacommunities (Mouquet and Loreau 2003)
and erode the relationship between spatial envi-
ronmental heterogeneity and the distribution of
species. Finally, the neutral perspective, which
often serves as a null model, assumes that all
individuals are demographically equivalent and
that community composition is driven by the
combination of limited dispersal and ecological
drift (Hubbell 2001).
The metacommunity perspectives outlined

above have provided the foundation for recent
theoretical developments identifying multiple
dispersal-based coexistence mechanisms. These
coexistence mechanisms all rely on distinct con-
nectivity patterns arising from interspecific dif-
ferences in spawning time, dispersal ability, or
dispersal direction. For instance, interspecific dif-
ferences in dispersal ability (Bode et al. 2011) or
asymmetrical connectivity patterns (Salomon
et al. 2010) can promote coexistence between
competing species when environmental condi-
tions are spatially homogeneous. Interspecific
differences in temporal variability have also been
identified as a coexistence mechanism in spa-
tially homogeneous environments (Berkley et al.
2010). Here, differences in spawning time cou-
pled with temporal variability in dispersal can
promote coexistence by creating ephemeral spa-
tiotemporal niches that promote the long-term
coexistence of competing species (Berkley et al.
2010). Finally, Aiken and Navarrete (2014)
extended the results of Berkley et al. (2010) and
Salomon et al. (2010) by showing that differences
in the dispersal properties of subordinate and
dominant species could promote coexistence in
competitive metacommunities.
Although metacommunity theory has defined

different perspectives based on the relative
importance of dispersal and environmental
heterogeneity as drivers of biodiversity, testing
this theory will require identification of statistical
signatures of these underlying mechanisms in
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observational data. However, given the neces-
sary scope and scale, it is logistically impractical
to conduct manipulative experiments in order to
identify the drivers of metacommunity structure
in the real world. One promising solution to this
vexing problem is variation partitioning, a statis-
tical technique commonly used to decompose
community variation into spatial and environ-
mental fractions (Borcard et al. 1992, 2004, Peres-
Neto et al. 2006). Within this framework, the
environmental fraction essentially measures the
degree of correlation between local species abun-
dances and abiotic factors such as temperature or
rainfall. The spatial fraction largely represents
the residual spatial variation in community
structure not explained by the abiotic factors.
The size of the spatial fraction is most commonly
interpreted as the effect of dispersal, or more
specifically, the degree of dispersal limitation,
where low dispersal rates or geographical barri-
ers can prevent species from reaching patches
characterized by their optimal environmental
conditions (Cottenie 2005, Flinn et al. 2010, Tuo-
misto et al. 2012). Although this statistical frame-
work is powerful, there is still considerable
debate about how to interpret the spatial and
environment fractions in an ecologically mean-
ingful way (Cottenie 2005, Gilbert and Bennett
2010, Tuomisto et al. 2012, Legendre and Gau-
thier 2014). For instance, in analyses of empirical
and simulated datasets, dispersal limitation can
lead to both large and small spatial fractions
(i.e., high and low residual spatial variation in
community structure respectively) (Cottenie
2005, Gilbert and Bennett 2010). Hence, bridging
the gap between metacommunity theory and
variation partitioning by identifying statistical
signatures of biological and environmental fac-
tors will promote our ability to predict and man-
age the dynamics of complex and interconnected
ecosystems.

Here, we use spatially explicit models to
explore the ability of variation partitioning to
detect a dispersal signal in environmentally
forced metacommunities. Specifically, we found
that although increasing advection (i.e., the mean
of the dispersal kernel) or diffusion (i.e., the stan-
dard deviation of the dispersal kernel) ultimately
leads to a decrease in the spatial fraction, the
magnitude of the spatial fraction does not map

to the dispersal rate directly. Indeed, large spatial
fractions can be associated with both high and
low dispersal rates and the strength of the envi-
ronmental gradient amplifies this inconsistency.
These results hold in the presence of environ-
mental noise as well as across a range of environ-
mental gradients and are consistent with
observational data from an intertidal metacom-
munity along the West Coast of the United
States. Overall, our findings suggest that the
interpretation of the spatial fraction does not
map onto a particular process, but rather
depends on the complex interaction between dis-
persal, boundary conditions, and strength of
environmental forcing.

MATERIALS AND METHODS

The model
To determine how environmental heterogene-

ity and different aspects of dispersal affect pat-
terns of species diversity and abundance, we
developed a spatially explicit metacommunity
model with lottery competition by extending
Levins’ classical spatially implicit framework
(see Appendix S1: Fig. S1; Levins 1969, Levins
and Culver 1971). This type of model is well sui-
ted for describing competition between sessile
species with mobile dispersal stages in both ter-
restrial (e.g., plants; Tilman 1994, Mouquet and
Loreau 2003) and aquatic ecosystems (e.g., inver-
tebrates; Gouhier et al. 2010b, 2011). Each meta-
community consists of L distinct sites linked by
propagule dispersal, a process that determines
each of the S species’ potential recruitment
according to a Gaussian kernel whose advection
and diffusion rates can be specified (Appen-
dix S1: Fig. S1c, d). Although all species share the
same dispersal kernel, their realized recruitment
patterns depend on the match between a site’s
environment and each species’ physiological
requirements, depicted by a Gaussian distribu-
tion around an optimal environmental value
(Appendix S1: Fig. S1b). Environmental hetero-
geneity was implemented as a simple linear gra-
dient (Appendix S1: Fig. S1a). These processes
were modeled using the following set of coupled
ordinary differential equations, which track the
abundance Ni of each species i at site x along a
one-dimensional array of size L:
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dNi xð Þ
dt

¼ ri xð ÞF e xð Þ; oið Þ 1�
XS
j¼1

Nj xð Þ
0
@

1
A

�miNi xð Þ
(1)

Here, the first term on the right-hand side rep-
resents the realized recruitment rate of species i
at site x, the second term in parentheses repre-
sents lottery competition for space, and the
third term represents species-specific back-
ground mortality. The realized recruitment rate
is the product of each species’ potential recruit-
ment rate ri xð Þ and survivorship F in that envi-
ronment e xð Þ. The potential recruitment rate
ri xð Þ is the convolution of the product of
propagule production pi yð Þ and density Ni yð Þ
at each source site y with the dispersal kernel k
(x) at destination site x:

ri xð Þ ¼
ZL=2

�L=2

pi yð ÞNi yð Þk x� yð Þdy (2)

Thus, the term ri xð Þ denotes the total number of
recruits arriving at each destination site x from
all other source sites y via dispersal. The disper-
sal kernel itself is a normalized Gaussian distri-
bution (i.e., sums to 1) with mean l and standard
deviation r (Siegel et al. 2003):

k xð Þ ¼ 1
r

ffiffiffiffiffiffi
2p

p e
�ðx� lÞ2

2r2 (3)

where l represents alongshore advection and r
represents diffusion. We manipulated both l and
r independently for each simulation, allowing us
to control the extent (advection) and scale (diffu-
sion) of dispersal. Each species’ propagule sur-
vivorship is represented by a Gaussian curve
centered around a species-specific environmental
optimum oi (Appendix S1: Fig. S1b) such that
survivorship F of species i at site x is:

F e xð Þ; oið Þ ¼ e
� e xð Þ � oið Þ

2

2

(4)

Hence, the smaller the difference between a spe-
cies optimum and the environment, the greater
its propagule survivorship and realized recruit-
ment rate.

Spatial environmental variation was modeled
using a simple linear gradient:

e xð Þ ¼ ux if x� L=2
�ux if x[ L=2

�
(5)

Here, u represents the slope of the linear environ-
mental gradient. We simulated 10 different levels
of u ranging from 0.02 to 0.16 in order to deter-
mine the robustness of our results to the strength
of the environmental gradient. We also ran addi-
tional simulations that included random noise
affecting local environmental conditions e xð Þ
within each site x using a white noise (spatially
uncorrelated) process to determine the robust-
ness of our results to different levels of environ-
mental stochasticity (Appendix S2):

e xð Þ ¼ uxþ v xð Þ (6)

Here, v xð Þ represents environmental stochasticity
via a random deviate drawn from a normal distri-
bution with a mean of zero and a standard devia-
tion ranging from 0 (no noise) to 1 (high noise).
Running simulations for 10 uniformly spaced
standard deviations between 0 and 1 allowed us
to determine the robustness of our model results
to variation in the linearity and stochasticity of the
environmental gradient (Appendix S2).

Model simulations
The model equations were solved numerically

using an explicit Runge–Kutta (4, 5) formula in
MATLAB (function ode45) for 2000 time steps.
The metacommunity consisted of S = 20 species
competing across L = 140 sites (absorbing bound-
ary conditions) or L = 100 sites (periodic bound-
ary conditions). We varied the dispersal advection
and diffusion rates independently to simulate the
dynamics of species ranging from direct develop-
ers, whose propagules remain in their natal site
(i.e., zero advection and diffusion), to long-
distance dispersers (i.e., high advection or diffu-
sion). For simulations manipulating the advection
rate l, the diffusion rate was fixed at r ¼ ffiffiffiffiffi

10
p

.
For simulations manipulating the diffusion rate r,
the advection rate was fixed at l = 0. We followed
existing approaches (Mouquet and Loreau 2003)
and used our model to simulate the simplest and
most generic metacommunity scenarios. Specifi-
cally, initial abundances for all species were ran-
dom across all sites, the same dispersal kernel
was used for each species, and the propagule pro-
duction rates pi were randomly selected from a
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uniform distribution with a minimum value of 5
and a maximum value of 10. The mortality rates
mi were selected so that each species had the same
production-to-mortality ratio pi/mi in order to
ensure coexistence in the absence of environmen-
tal heterogeneity and dispersal. Additionally, each
species’ environmental optimum oi was selected
randomly from a uniformly spaced vector of 20
values ranging from the minimum to the maxi-
mum environmental condition e xð Þ. Overall,
adopting this approach allowed us to generate
baseline and system-agnostic results. Simulations
were run under one of two scenarios to explore
the effects of boundary conditions. First, we used
absorbing boundary conditions to simulate a
finite-size linear environment where propagules
are able to leave the system. Second, we used
periodic boundary conditions to simulate an
infinite-size environment without edge effects
(Gouhier et al. 2010a, b, 2013). Here, the linear
environmental gradient was thus altered in order
to avoid sudden spatial discontinuities at the ends
of the spatial domain. Specifically, the environ-
mental gradient in our simulations increases lin-
early with slope u from the beginning of the
spatial domain (i.e., site 1) to the middle (i.e., site
50) and then decreases linearly from the middle to
the opposing end of the spatial domain (i.e., site
100) with slope �u. This ensures the two ends of
the spatial domain (sites 1 and 100), which are in
fact nearest neighbors under periodic boundary
conditions, experience similar environmental con-
ditions. To test the robustness of the model results
to covariation in advection and diffusion, we also
ran additional simulations where both aspects of
dispersal (advection, diffusion) covaried as pre-
dicted under climate change (e.g., Gerber et al.
2014; see Appendix S3). All analyses were per-
formed on final species abundances. Species
whose final local abundances were lower than
10�8 were considered to have gone extinct.

Model analysis
The model results were analyzed using two

complementary approaches. First, we used spe-
cies’ presence/absence information to partition
biodiversity into local (a), between-community
(b), and regional (c) diversity using standard
methods (Whittaker 1972, Mouquet and Loreau
2003). Here, regional diversity c was measured
as the total species richness across the entire

metacommunity, local diversity a was measured
as the average species richness within each site,
and between-community diversity b was mea-
sured as the difference between regional and
local diversity. Second, we used partial redun-
dancy analysis (RDA) to partition species abun-
dances across the metacommunity into their
spatial (S|E), environmental (E|S), and shared
(E∩S) fractions (Borcard et al. 1992, 2004, Peres-
Neto et al. 2006). This was achieved by relating
the matrix of species abundances Y to (1) the
environmental matrix X1, which consisted of the
variables that characterized the environmental
gradient, and (2) the spatial matrix X2, which
was created via a spectral decomposition of the
spatial structure of the metacommunity using
the principle coordinates of neighboring matrices
(PCNM) method (Borcard et al. 2004). The envi-
ronmental fraction E|S thus represents the spatial
variation in community structure that is strictly
due to the environment, whereas the spatial frac-
tion S|E represents the “residual” spatial varia-
tion in community structure that cannot be
explained by the environment. This method is
particularly powerful because it can partition the
spatial and environmental fractions of metacom-
munity structure even when the shared fraction
E∩S is large because the environment is spatially
structured (Borcard et al. 1992, 2004, Peres-Neto
et al. 2006). This is important given that the envi-
ronment is strongly spatially structured in both
our simulations and our test system, the inter-
tidal metacommunity along the West Coast of
the United States (Gouhier et al. 2010b).

Empirical case study
We used community data from the rocky inter-

tidal along the West Coast of the United States
(Russell et al. 2006, Schoch et al. 2006, Gouhier
et al. 2010b) to determine the empirical relation-
ship between the spatial fraction and dispersal.
This is an ideal test system because it is character-
ized by (1) strong latitudinal environmental gradi-
ents in sea surface temperature, primary prod-
uction, and upwelling (Menge et al. 2004, Gouhier
et al. 2010b, Menge and Menge 2013), and (2) the
relatively rapid southward advective California
Current (Hickey 1979, Huyer 1983, Largier et al.
1993). Data were collected annually from 2000
to 2003 at 48 sites ranging from southern
California to northern Washington (32.7–48.4°N).
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Community structure was determined by averag-
ing the abundance of each species across 10 ran-
domly placed 0.25-m2 quadrats along 3–4 random
transects at each site for the low, mid, and high
zone (see details in Gouhier et al. 2010b). Environ-
mental variables included chlorophyll-a concentra-
tion (chl-a, in mg/m3), upwelling index (m3/s/
100 m of coastline), and mean annual sea surface
temperature (SST, in °C). Data were obtained from
the sea-viewing wide field of view sensor (Sea-
WiFS; NASA), from sea level pressure maps (Paci-
fic Fisheries Environmental Laboratory), and from
a high-resolution radiometer (NOAA), respec-
tively (Gouhier et al. 2010b). Pelagic larval dura-
tion (PLD) is commonly used as a proxy for
dispersal ability for sessile marine organisms, as
directly assessing larval movement remains a chal-
lenge (Shanks et al. 2003, Siegel et al. 2003, Shanks
2009, Selkoe and Toonen 2011). For our empirical
test, we used this approach to split the species
found in our surveys into four distinct groups
based on their dispersal potential: direct develop-
ers (0 d), low PLD (~8 d), intermediate PLD
(~21 d), and high PLD (~70 d). We conducted vari-
ation partitioning for each group of species across
all zones in this empirical dataset to determine the
size of the spatial and environmental fractions.
The approach we used was identical to the one
used for the model simulations, where species
abundances across the metacommunity were par-
titioned into their spatial (S|E), environmental (E|
S), and shared (E∩S) fractions (Borcard et al. 1992,
2004, Peres-Neto et al. 2006).

RESULTS

Patterns of biodiversity
We begin by analyzing the closed version of

the metacommunity model (i.e., self-recruitment
only). Under this scenario, the following relation-
ship between all pairs of species i; jf g must hold
for coexistence to occur at equilibrium:

mi xð Þ
pi xð ÞF e xð Þ; oið Þ ¼

mj xð Þ
pj xð ÞF e xð Þ; oj

� � (7)

The ratio of mortality to realized recruitment
must thus be identical across all species in order
for coexistence to occur within each site x. Hence,
in the absence of dispersal, an arbitrary number
of species can coexist via a fitness equalizing

tradeoff between mortality and realized recruit-
ment (sensu Chesson 2000). Because any species
with a higher ratio is expected to competitively
exclude all other species locally, environmental
heterogeneity promotes species sorting by
generating low within-site diversity a, high
between-site diversity b, and maximizing regional
diversity c (Fig. 1a, b; dispersal advection and dif-
fusion rates = 0). This is because each species
essentially monopolizes the site whose environ-
mental conditions are closest to its optimum.
In general, the introduction of dispersal

between sites generates the species diversity pat-
terns commonly described in the literature (Mou-
quet and Loreau 2002, 2003, Shanafelt et al. 2015,
Thompson and Gonzalez 2016). Here, the type of
dispersal (advection vs. diffusion) and the nature
of the boundary conditions (absorbing simulating
a finite-size linear environment vs. periodic simu-
lating an infinite-size environment) determine the
structure of biodiversity in the metacommunity.
As species are subject to the same linear gradient
under each scenario (absorbing or periodic), dif-
ferences only occur at high dispersal rates, which
lead to lower recruitment rates (due to greater
propagule loss) with absorbing boundary condi-
tions and higher recruitment rates with periodic
conditions, as species are able to reach parts of the
spatial domain that are similar to their optimal
environmental condition. Overall, the shapes of
the species diversity curves are largely driven by
the nature of dispersal whereas the heights of the
curves are mediated by the boundary conditions
(Fig. 1). In the absence of dispersal, our simula-
tions confirm our analytical results: Self-recruit-
ment generates a strong positive local feedback
between adult abundance and propagule produc-
tion that promotes species abundance in sites
characterized by their optimal environmental con-
ditions (Fig. 1). This promotes competitive exclu-
sion and species sorting, which lead to low local
diversity (a), high between-community diversity
(b), and high regional diversity (c). Increasing dis-
persal (0 < l < 3, 0 < r < 5) reduces the degree
of self-recruitment and species sorting by generat-
ing a positive regional feedback between sites via
spatial rescue effects (Brown and Kodric-Brown
1977). This leads to an increase in local diversity, a
sharp reduction in between-community diversity,
and a moderate decline in regional diversity
(Fig. 1a–d). Further increasing dispersal (l, r � 5,
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30) spatially homogenizes the metacommunity,
destroys all spatial rescue effects, and reduces
diversity at all scales as regionally dominant spe-
cies are able to competitively exclude most species
across the metacommunity (Fig. 1a–d).

For advective dispersal, local diversity is thus
maximized at intermediate rates when advection
is high enough to promote spatial rescue effects
but not so high as to prevent self-recruitment.
Indeed, high advective dispersal rates will spa-
tially couple distant sites experiencing different
parts of the environmental gradient, so a species
growing in a site characterized by good environ-
mental conditions will receive relatively few
recruits from unproductive sites experiencing
poor environmental conditions. Hence, even if the
vast majority of these arriving recruits survive,
abundance at the site experiencing good environ-
mental conditions will be relatively low since the
supply rate will be limited. Conversely, a site
characterized by poor environmental conditions

might receive a large supply of recruits from sites
experiencing good environmental conditions, but
because most of those recruits will not survive,
local species abundance will also be low.
Diffusive dispersal promotes higher overall

levels of species diversity by maintaining the local
positive feedback between abundance and recruit-
ment as the dispersal kernel remains centered on
the natal site. Hence, self-recruitment can allow
species in sites experiencing good environmental
conditions to establish larger populations and
subsequently subsidize populations at sites experi-
encing poor environmental conditions via source–
sink dynamics (Pulliam 1988). At higher dispersal
rates, these mass effects allow for increased abun-
dances for species in non-optimal environments.
While these patterns hold regardless of the
strength of the environmental gradient (Fig. 1a–d),
differences in the diversity–dispersal relationship
emerge in metacommunities with absorbing vs.
periodic boundary conditions (Fig. 1a, b vs. c, d).
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Fig. 1. Metacommunity species richness at multiple spatial scales as a function of dispersal advection (a) and
diffusion (b) for different environmental gradients. Red, blue, and black lines depict local (a), between-commu-
nity (b), and regional diversity (c), respectively. In addition to the color (red, blue, black), the translucence of each
line represents the strength (slope) of the environmental gradient, which ranges from low (lighter hues) to high
(darker hues). Results represent means from 10 replicate simulations. The vertical dashed line in panel (a) depicts
when advection rates are high enough to prevent self-recruitment (l > 2r � 5).
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Diversity levels are generally higher under peri-
odic than absorbing boundary conditions because
under the latter, all species experience an effective
reduction in their recruitment rates as propagules
are lost from the metacommunity (Fig. 1). This is
particularly true when increasing advective ver-
sus diffusive dispersal, which increases the rate at
which propagules are whisked away from the
metacommunity (Fig. 1a, c vs. Fig. 1b, d). Regio-
nal diversity is driven by between-community
diversity (b) at low dispersal in metacommunities
with absorbing boundary conditions, as spatial
rescue effects allow most species in the metacom-
munity to persist. Intermediate rates of advection
(Fig. 1a, b; l, r = 6, 10) reduce regional species
diversity by replacing the local positive feedback
between abundance and self-recruitment in closed
communities with a regional negative feedback

that allows the same set of regionally dominant
species (species with higher regional-scale real-
ized recruitment rate F) to monopolize the meta-
community regardless of local environmental
conditions. In doing so, advection shifts control of
regional diversity (c) from between-community
(b) to local (a) diversity. Additionally, the negative
regional feedback generates relatively uniform
abundances for the few regionally dominant spe-
cies across the entire range of dispersal advection
(Fig. 2a; l > 5).
Initially, similar trends appear in metacommu-

nities characterized by periodic boundary condi-
tions (Fig. 2c, d). Low levels of diffusive dispersal
promote spatial rescue effects and spatially homo-
genize the metacommunity, thus allowing local
diversity (a) rather than between-community
diversity (b) to dictate regional diversity (c).
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Fig. 2. Species rank abundance as a function of dispersal advection rate (a) and diffusion rate (b). The regional
mean abundance of each species is plotted on a log scale as a function of species rank abundance. Color repre-
sents log abundance, which ranges from low (cool colors) to high (warm colors). Results represent means from
10 replicate simulations.

 ❖ www.esajournals.org 8 July 2018 ❖ Volume 9(7) ❖ Article e02357

SALOIS ET AL.



Intermediate rates of diffusive dispersal fully spa-
tially homogenize the metacommunity, thus pro-
moting competitive exclusion. Interestingly,
further increasing diffusion leads to an additional
peak in both local and regional diversity (r~10–
30, depending on environmental gradient). Here,
species are able to persist in more locations
throughout the metacommunity due to an envi-
ronmental rescue effect whereby a portion of the
propagules produced in optimal natal sites arrive
in equivalently optimal sites far from their origin.
This secondary match between a species’ physio-
logical optima and the local environment creates
a boost in fitness resulting in the resurgence of
rare species (Fig. 2d). Hence, the primary peak in
species diversity due to spatial rescue and the sec-
ondary peak in species diversity due to environ-
mental rescue yield fundamentally different
patterns of community structure, with the former
being characterized by a more uniform species
abundance distribution (many abundant species)
and the latter a skewed species abundance distri-
bution (many rare species; Fig. 2d).

This environmental rescue occurs at diffusion
rates where dispersal is strong enough to dam-
pen spatial rescue effects, but not strong enough
to homogenize the whole system; thus, a sec-
ondary peak in diversity exists for all environ-
mental gradients. For weaker gradients (slopes
of 0.02–0.05), the secondary peaks in local and
regional diversity emerge at lower levels of diffu-
sion because it is easier for dispersal to spatially
homogenize a system that is less environmen-
tally heterogeneous (Fig. 1d). Hence, we expect
that the second peak should shift to the left (to
lower diffusion rates) with decreasing environ-
mental variation slopes (i.e., weaker environmen-
tal gradients). Conversely, increasing the slope of
the environment leads to the occurrence of an
increasingly distinct secondary peak at higher
diffusion rates.

Patterns of metacommunity structure
We applied variation partitioning to the model

output in order to determine how different levels
of dispersal advection and diffusion affect the
ecological interpretation of the spatial and envi-
ronmental fractions in metacommunities with
either absorbing or periodic boundary condi-
tions. In environments characterized by either
absorbing and periodic boundary conditions,

increasing the advection (l) or the diffusion (r)
rate ultimately decreases the spatial fraction by
allowing species to increasingly find and monop-
olize the sites characterized by their optimal
environmental conditions (Fig. 3). Regardless of
the nature of dispersal or the boundary condi-
tions, the introduction of dispersal promotes spa-
tial rescue effects that erode the relationship
between the environment and community struc-
ture, resulting in a spatial fraction explaining as
much as 90% of the total variation in community
structure. Despite these general similarities, there
are key differences in the effect of increased dis-
persal on the spatial fraction that depend on the
boundary conditions and the nature of dispersal.
For absorbing boundary conditions, increasing

either aspect of dispersal (advection or diffusion)
beyond the levels required for spatial rescue gen-
erally promotes species sorting which, in effect,
reduces the spatial fraction. However, as previ-
ously stated, a few regionally dominant species
dominate regardless of environmental condi-
tions, so the spatial fraction never explains <40%
of the total variation in community structure
regardless of the extent of dispersal (Fig. 3c, f).
Conversely, under periodic boundary condi-

tions, increasing advection versus diffusion has
different effects on the sign and the magnitude of
the change in the spatial fraction. The most dis-
cernible difference between the advection and
diffusion appears at low levels of dispersal
(Fig. 3i vs. l; 0 < l, r < 8). Initially, increasing
the dispersal advection rate increases the spatial
fraction, with space explaining anywhere from
40% to 100% of the variation in community struc-
ture, whereas increasing the diffusion rate causes
a reduction in the variation explained by the spa-
tial fraction from 80 to <10% depending on
strength of the gradient. Increasing the dispersal
advection rate creates a spatial lag between local
environmental conditions and their effects on
recruitment and community structure. This spa-
tial lag disrupts the local positive feedback
between abundance and self-recruitment, replac-
ing it with a regional negative feedback that
erodes the correlation between environmental
conditions and community structure and thus
increases the spatial fraction (Fig. 3i). Apart from
the initial increase under advective dispersal, the
predominant trend is a reduction in the spatial
fraction. This decrease begins at intermediate
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dispersal rates (l > 8), which lead to spatial
homogenization and the loss of spatial rescue
effects. The spatial fraction remains high relative
to the spatial fraction observed under diffusive
dispersal because species are less able to exploit
the periodicity of the environment and do not
experience environmental rescue, resulting in the
presence of a few regionally dominant species, as
in absorbing conditions.

Under diffusive dispersal, the initial decrease
in the spatial fraction is a consequence of high
species sorting, where species are able to reach

their environmental niche and exclude their infe-
rior competitors locally (Fig. 3l). As the diffusion
rate increases, environmental rescue increases
the degree to which species are able to persist at
(multiple) optimal locations, effectively increas-
ing the variation explained by the environment
and further reducing the spatial fraction. Overall,
these results demonstrate that altering the rates
of advective vs. diffusive dispersal can lead to
very different patterns of spatial variation in
community structure under periodic boundary
conditions.

Fig. 3. Variation partitioning of community structure as a function of dispersal advection rate (a–c) and diffu-
sion rate (d–f). Community structure was partitioned into three fractions: the environment (E|S), space (S|E), and
their joint influence or intersection (E∩S) (i.e., the fraction of the variation in community structure jointly influ-
enced by space and the environment). Line color and translucence represent the strength (slope) of the environ-
mental gradient, which ranges from low (lighter hues) to high (darker hues). Results represent means from 10
replicate simulations.

 ❖ www.esajournals.org 10 July 2018 ❖ Volume 9(7) ❖ Article e02357

SALOIS ET AL.



Empirical case study
To test our model predictions, we applied vari-

ation partitioning to a dataset containing abun-
dances of rocky intertidal species in the high,
mid, and low zone along the West Coast of the
United States. Species were grouped based on
their pelagic larval duration (PLD), which served
as a proxy for dispersal ability (Shanks et al.
2003, Shanks 2009, Selkoe and Toonen 2011). This
case study shows that the spatial fraction can
map to different PLD values (Fig. 4). Indeed, we
found no relationship between the spatial frac-
tion and the community’s mean group PLD
(ANOVA; df = 3, F = 2.498, P-value = 0.07518;
Table 1, Fig. 4) and a significant interaction
between PLD and zone (ANOVA; df = 6,

F = 4.408, P-value = 0.00194; Table 1). Hence,
the relationship between PLD and the spatial
fraction depends on zone. For instance, large
spatial fractions were associated with high PLD
in the low zone but low PLD in the high zone
(Fig. 4). This means that the size of the spatial
fraction alone is not a reliable predictor of the
extent of dispersal. Additionally, there was a
significant relationship between the spatial frac-
tion and zone (ANOVA; df = 2, F = 14.933,
P-value < 0.0001; Table 1). Furthermore, PLD
explained a smaller proportion of the variance in
the spatial fraction than zone (g2 = 0.075 vs.
g2 = 0.299; Table 1). This suggests that there are
other factors affecting the size of the spatial frac-
tion beyond dispersal (e.g., differences in

Fig. 3. (Continued)
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desiccation stress across zones). Overall, these
empirical results are consistent with the effects of
dispersal predicted by our model: The spatial
fraction is not a measure of dispersal alone and
should thus not be used as a direct proxy.
Instead, one needs to account for the strength
and nature of environmental forcing as well as
the type of dispersal in order to correctly inter-
pret the size of the spatial fraction.

DISCUSSION

Our empirical and theoretical results indicate
that the effects of dispersal on patterns of species
diversity and abundance cannot easily be deter-
mined by applying statistical variation partition-
ing to observational data collected across
multiple scales. Indeed, although increasing dis-
persal consistently leads to a reduction in the
spatial fraction, as predicted by theory, this sig-
nature trend is unlikely to be detected from sta-
tistical snapshots of observational data because
the size of the spatial fraction depends on the

complex interaction between environmental
heterogeneity, boundary conditions, and disper-
sal. Our results have important implications for
managing complex and interconnected ecosys-
tems experiencing environmental variability.

Effects of dispersal on biodiversity across scales
The effects of dispersal on community stability

(Holland and Hastings 2008, Gouhier et al.
2010a, b), persistence (Huffaker 1958, Blasius
et al. 1999), and biodiversity (Brown and Kodric-
Brown 1977, Tilman 1994) have been well estab-
lished in theory and practice (reviewed by Briggs
and Hoopes 2004, Holyoak et al. 2005). When
dispersal is too low, environmentally heteroge-
neous communities become dominated by the
strongest local competitors, thus generating low
local (a) diversity and high between-community
(b) diversity. This type of species sorting is typi-
cally associated with low community stability
and persistence because each species is rare at
the regional scale and thus vulnerable to the loss
of the few locations where they are found. Inter-
mediate levels of dispersal promote both species
coexistence and community stability by allowing
source–sink dynamics to emerge across the meta-
community (Mouquet and Loreau 2003, Gouhier
et al. 2010a, b). Under this scenario, the increased
movement of organisms leads to high local diver-
sity and low between-community diversity.
Overall, these types of spatial rescue effects will
arise as long as dispersal is not high enough to
fully synchronize the dynamics of all communi-
ties. If dispersal is too high, the entire metacom-
munity behaves like a single, well-mixed
community with low local diversity due to

Table 1. Summary of ANOVA model testing the
effects of mean group pelagic larval duration (PLD)
and zone on the spatial fraction obtained via varia-
tion partitioning.

Source df MS F P-value
Effect

size g2
� �

Mean PLD 3 0.2167 2.498 0.07518 0.075
Zone 2 1.2954 14.933 1.89e�05 0.299
Mean PLD 9
zone

6 0.3824 4.408 0.00194 0.265

Residuals 36 0.0868 0.361

Note: Analysis was conducted on log10-transformed spatial
fractions.
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Fig. 4. Variation partitioning results for an intertidal
metacommunity. Community structure was parti-
tioned into three fractions: the environment (E|S),
space (S|E), and their joint influence or intersection
(E∩S). The spatial fraction is plotted as a function of
intertidal zone (low, mid, high). The color of the bar
(white, light gray, dark gray, black) indicates mean
group pelagic larval durations (PLD), a measure of dis-
persal ability (direct dispersers, low, medium, high).
Overlapping horizontal lines indicate bars that are not
statistically different at the alpha = 0.05 significance
level. Analysis was conducted on log10-transformed
spatial fractions.
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competitive exclusion by the regionally domi-
nant species, zero between-community diversity,
and low stability (Mouquet and Loreau 2003a,
Gouhier et al. 2010a, b).

Our results based on manipulating dispersal dif-
fusion rates are largely consistent with these pre-
dictions. Increasing diffusion initially leads to high
local diversity and lower between-community
diversity due to source–sink dynamics (Fig. 1b, d).
Further increasing diffusion leads to spatial
homogenization and species sorting, with low
local, between-community, and regional diversity
(Fig. 1b, d). However, when environmental condi-
tions are periodic in nature, increasing diffusion
even further leads to an unexpected spike of local
and regional diversity by (Fig. 1d) due to environ-
mental rescue effects. High levels of dispersal open
up the opportunity for species to reach a sec-
ondary optimal location, promoting the persis-
tence and subsequent resurgence of rare species,
thereby promoting both local and regional diver-
sity. Ultimately, very high diffusion leads to spatial
homogenization and low local, between-commu-
nity, and regional diversity (Fig. 1d).

This dispersal-induced bimodal diversity pat-
tern in periodic environments, which is robust to
(1) the strength of the environmental gradient
(Fig. 1d) and (2) the addition of environmental
stochasticity (Appendix S2), differs from the uni-
modal predictions based on classical theory
(Mouquet and Loreau 2003a). The difference is
likely due to the use of a spatially implicit
approach by Mouquet and Loreau (2003)
whereby dispersing propagules were redis-
tributed uniformly across the metacommunity.
Hence, although they were able to manipulate
the degree of mixing by altering the dispersal
rate, the scale of mixing remained constant and
global. In our spatially explicit framework, how-
ever, varying the diffusion rate and boundary
conditions alters the degree and the scale of mix-
ing by changing the breadth of the dispersal ker-
nel and the linearity of the environmental
gradient. We suggest that our results stem from
the simultaneous effect of the diffusion rate on
the degree of self-recruitment, the scale of disper-
sal, and the size of the metacommunity. Our
advection results further reinforce the notion that
some degree of self-recruitment is necessary to
generate the spatial rescue effects described by
classical theory. We showed a uniform reduction

in local, between-community, and regional diver-
sity when dispersal advection was sufficiently
large to disrupt self-recruitment (Fig. 1a). Here,
by replacing the local positive feedback between
abundance and self-recruitment with a regional
negative feedback, advection essentially reduces
the fitness of all species, thus resulting in all com-
munities becoming populated by the same few
regional dominants. These patterns are expected
to hold as long as the advection-to-diffusion ratio
is sufficiently high so as to prevent self-recruit-
ment (Appendix S3). Overall, our results suggest
that species diversity across scales and the rela-
tive influence of local vs. regional processes
depend on the complex interplay between the
size of the metacommunity, the degree of self-
recruitment, and spatial extent of dispersal in
environmentally forced metacommunities.

Detecting the effects of dispersal in the real world
The impracticality of conducting manipulative

experiments at the scales needed to document the
effects of dispersal on biodiversity has prompted
much interest in the development of statistical vari-
ation partitioning methods to decompose meta-
community structure into its spatial and
environmental fractions (Borcard et al. 1992, 2004,
Dray et al. 2006, Peres-Neto et al. 2006). According
to these variation partition frameworks, the envi-
ronmental fraction will be large if dispersal is high
enough to allow species to reach their environmen-
tal niche and exclude their competitors at local
scales (species sorting), whereas the spatial fraction
will be large if dispersal is low enough to allow
spatial rescue effects without promoting local com-
petitive exclusion (mass effect). Hence, the spatial
fraction should be proportional to the degree of
dispersal limitation in the metacommunity.
Although such variation partitioning methods are
increasingly being applied to empirical datasets in
order to determine the relative influence of envi-
ronmental heterogeneity and dispersal on (meta)-
community structure in nature, the interpretation
of the spatial fraction remains controversial (Gil-
bert and Bennett 2010, Tuomisto et al. 2012). For
example, using simulated data, Gilbert and Ben-
nett (2010) showed that variation partitioning
methods were unable to correctly identify the rela-
tive importance of dispersal and environmental
heterogeneity. However, their tests of variation
partitioning methods were based on “model-free”
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simulated data that did not incorporate the
dynamical feedbacks between local competition
and regional dispersal over multiple generations.

Here, using a dynamic metacommunity model,
we were able to show that dispersal advection
and diffusion leave similar yet distinct signatures
that can be detected via variation partitioning
under certain scenarios. Our results extend and
support the classical ecological interpretation of
the spatial fraction by showing that increasing
advective or diffusive dispersal ultimately reduces
the size of the spatial fraction under both absorb-
ing and periodic boundary conditions. Although
this trend (i.e., the negative correlation between
the spatial fraction and dispersal) is clear and con-
sistent across all simulated scenarios, the size of
the spatial fraction alone cannot be used to infer
the relative importance of dispersal because the
former depends on a multitude of factors includ-
ing the strength of the environmental gradient,
the nature of dispersal, and the type of boundary
conditions. Our empirical results are consistent
with our simulations in that the spatial fraction
varies significantly across zones, a proxy for envi-
ronmental stress, but not across PLD, a proxy for
dispersal. Furthermore, the significant interaction
between PLD and zone suggests that PLD is not a
consistent predictor of the spatial fraction.

Taken together, these results resolve an impor-
tant discrepancy between theoretical expectations
and empirical observations: Although increased
dispersal will ultimately reduce the spatial fraction
(negative trend) under all scenarios, as predicted
by theory, detecting this elusive signal in nature is
likely to be fraught with difficulties due to the fact
that observational studies provide snapshots of
the spatial fraction rather than trends and the for-
mer are influenced not only by dispersal, but also
by the strength of the environmental gradient and
the nature of the boundary conditions.

That being said, the more information available
about the nature of dispersal and the size of the
metacommunity, the more insights can be gleaned
about the mechanisms driving the patterns in
community structure. In finite-size metacommu-
nities (simulated via absorbing boundaries and a
linear environment), the spatial fraction explains
more than 40% of the variation in community
structure, suggesting that spatial rescue effects are
driving coexistence patterns and diversity levels.
The added mortality associated with finite

boundaries (propagules are leaving the system)
mitigates the differential impact of advective vs.
diffusive dispersal on spatial community struc-
ture. Conversely, in infinite-size metacommunities
(simulated via periodic boundaries and a periodic
environment), species do not have to contend
with added propagule loss, so the nature of dis-
persal plays a much larger role. Here, a higher
degree of self-recruitment can bolster the ability
of species to thrive locally and persist at the regio-
nal level. Thus, the mechanisms driving the mag-
nitude of the spatial fraction in periodic
environments are the increased availability of
suitable environmental conditions and the high
degree of self-recruitment due to diffusive disper-
sal which, when combined, enable rare species to
persist across the metacommunity via both spatial
and environmental rescue. Overall, our results
suggest that although variation partitioning meth-
ods could, in theory, be used to tease apart the rel-
ative importance of environmental heterogeneity
and dispersal on community structure, their
direct applicability in the real world is likely to be
limited. Hence, while a negative relationship
between dispersal and the spatial fraction may be
an indicator of increased connectivity in meta-
communities, the size of the spatial fraction alone
is not sufficient to determine the extent of connec-
tivity in natural systems. Consequently, our
results highlight the mistakes likely to be made
when attempting to infer ecological mechanisms
from statistical snapshots of natural metacommu-
nities via variation partitioning.

Spatial management implications
Metapopulation theory has long been used to

inform conservation and management decisions
because of its ability to account for the effects of
local and regional processes on the persistence of
species across scales (reviewed by Hanski 1998).
Indeed, metapopulation theory is largely respon-
sible for identifying the role of connectivity in
maintaining local populations. Although pro-
moting connectivity has become a key objective
in the spatial management of interconnected
ecosystems (Botsford et al. 2001, 2003), too much
connectivity can be detrimental to persistence by
synchronizing and destabilizing the dynamics of
metacommunities (Gouhier et al. 2010a, 2013).
Hence, determining when connectivity will pro-
mote or reduce persistence is critical in order to
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effectively manage and conserve natural ecosys-
tems (Earn et al. 2000).

Our results suggest exercising caution when
attempting to evaluate the extent of connectivity
in a metacommunity via variation partitioning.
Indeed, a small spatial fraction can emerge for
either low or high rates of advective or diffusive
dispersal under both absorbing and periodic
boundary conditions. Hence, the size of the spa-
tial fraction alone is not sufficient to infer the
extent of dispersal or connectivity in metacom-
munities. We suggest that applying variation
partitioning to system-specific dynamical models
parameterized with real data can help improve
our ability to understand and manage natural
systems by mapping statistical patterns in meta-
community structure to their underlying ecologi-
cal processes.
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